Земное притяжение что это такое


Что такое гравитация для чайников: определение и теория простыми словами

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Закон всемирного тяготения

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.

Закон всемирного тяготения

По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь .

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы.  Таким образом гравитация – не силовое взаимодействие.

Чем массивнее объект, тем сильнее он искривляет пространство

Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.

Моделирование гравитационных волн от слияния двух черных дыр

Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.
Состояние невесомости - это не отсутствие гравитации

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис. Мы поможем учиться легко при самых больших нагрузках!

zaochnik.ru

Земное притяжение: почему люди не падают с поверхности Земли?

Дети порой бывают очень любопытными и иногда задают вопросы, на которые очень сложно ответить. Например, почему люди не падают с поверхности Земли? Ведь она круглая, вращается вокруг своей оси да еще и перемещается в бескрайних просторах Вселенной среди огромного количества звезд. Почему при этом человек может спокойно ходить, сидеть на диване и совершенно не беспокоиться? К тому же некоторые народы так и живут «вверх ногами». Да и бутерброд, который уронили, падает на землю, а не летит в небо. Может, что-то притягивает нас к Земле и мы не может оторваться?

Почему люди не падают с поверхности Земли?

Если ребенок начал задавать подобные вопросы, то можно рассказать ему о гравитации, или по-другому – о земном притяжении. Ведь именно это явление заставляет любой предмет стремиться к поверхности Земли. Благодаря гравитации человек не падает и не улетает.

Земное притяжение позволяет населению планеты спокойно перемещаться по ее поверхности, возводить здания и всевозможные сооружения, кататься на санках или лыжах с горы. Благодаря гравитации предметы падают вниз, а не летят вверх. Чтобы проверить это на деле, достаточно подбросить мяч. Он в любом случае упадет на землю. Вот почему люди не падают с поверхности Земли.

Конечно, земное притяжение не позволяет человеку падать с Земли. Но возникает другой вопрос - почему Луна на нее не падает? Ответ очень прост. Луна движется постоянно по орбите нашей планеты. Если же спутник Земли остановится, то он обязательно упадет на поверхность планеты. Это также можно проверить, проведя небольшой эксперимент. Для этого нужно привязать веревочку к гайке и раскрутить ее. Она будет перемещаться в воздухе до тех пор, пока не остановится. Если же прекратить раскручивание, то гайка просто упадет. Стоит также отметить, что гравитация Луны примерно в 6 раз слабее земного притяжение. Именно по этой причине здесь ощущается невесомость.

Сила притяжения есть у всех

Силой притяжения обладают практически все предметы: животные, машины, здания, люди и даже мебель. И человек не притягивается к другому человеку только потому, что наша гравитация достаточно мала.

Сила притяжения напрямую зависит от расстояния между отдельными телами, а также от их массы. Так как человек весит очень мало, он притягивается не к другим предметам, а именно к Земле. Ведь ее масса значительно больше. Земля очень большая. Масса нашей планеты огромна. Естественно, и сила притяжения велика. Благодаря этому все предметы притягиваются именно к Земле.

Когда было открыто земное притяжение?

Для детей бывают неинтересны скучные факты. Но история открытия земного притяжения достаточно странная и забавная. Закон всемирного тяготения был открыт Исааком Ньютоном. Ученый сидел под яблоней и размышлял о Вселенной. В этот момент ему на голову упал плод. В результате этого ученый осознал, что все предметы падают именно вниз, потому что существует сила притяжения. Исаак Ньютон продолжил свои исследования. Ученый установил, что сила гравитации зависит от массы тел, а также от расстояния между ними. Он также доказал, что на большом расстоянии предметы не способны влиять друг на друга. Так и возник закон гравитации.

Все ли падает вниз: небольшой эксперимент

Чтобы ребенок мог лучше понять, почему люди не падают с поверхности Земли, можно провести небольшой эксперимент. Для этого потребуются:

Стакан необходимо наполнить жидкостью до самых краев. После этого емкость следует накрыть картоном так, чтобы внутрь не попал воздух. После этого нужно перевернуть стакан дном вверх, придерживая при этом картон рукой. Лучше всего проводить эксперимент над раковиной.

Что же произошло? Картон и вода остались на месте. Дело в том, что внутри емкости совершенно нет воздуха. Картон и вода неспособны преодолеть давление воздуха снаружи. Именно по этой причине они остаются на своих местах.

fb.ru

Как преодолеть земное притяжение

Подробности Категория: Человек и небо Опубликовано 11.07.2014 12:37 Просмотров: 10255

Человечество давно стремилось в космос. Но как оторваться от Земли? Что мешало человеку взлететь к звёздам?

Как мы уже знаем, мешало этому земное притяжение, или гравитационная сила Земли - главное препятствие для космических полётов.

Земное притяжение

Все физические тела, находящиеся на Земле, подчиняются действию закона всемирного тяготения. Согласно этому закону все они притягивают друг друга, то есть действуют друг на друга с силой, которая называется гравитационной силой, или силой тяготения.

Величина этой силы прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

 

Так как масса Земли очень велика и значительно превышает массу любого материального тела, находящегося на её поверхности, то сила тяготения Земли значительно больше сил тяготения всех других тел. Можно сказать, что по сравнению с силой тяготения Земли они вообще незаметны.

Земля притягивает к себе абсолютно всё. Какой бы предмет мы ни бросили вверх, под действием силы тяготения он обязательно вернётся на Землю. Вниз падают капли дождя, вода стекает с гор, осыпается листва с деревьев. Любой предмет, который мы уронили, также падает на пол, а не на потолок.

Главное препятствие для полётов в космос

Земное тяготение не даёт возможности летательным аппаратам покинуть Землю. И преодолеть его нелегко. Но человек научился это делать.

Понаблюдаем за мячом, лежащим на столе. Если он скатится со стола, то сила притяжения Земли заставит его упасть на пол. Но если мы возьмём мяч и с силой бросим вдаль, то упадёт он не сразу, а спустя некоторое время, описав траекторию в воздухе. Почему же он смог преодолеть земное притяжение хотя бы на короткое время?

А произошло вот что. Мы приложили к нему силу, тем самым сообщив ускорение, и мяч начал двигаться. И чем большее ускорение получит мяч, тем выше будет его скорость и тем дальше и выше он сможет улететь.

Представим себе установленную на вершине горы пушку, из которой выпущен снаряд А с большой скоростью. Такой снаряд способен пролететь несколько километров. Но, в конце концов, снаряд всё равно упадёт на землю. Его траектория под действием земного притяжения имеет изогнутый вид. Снаряд В вылетает из пушки с большей скоростью. Траектория его полёта более вытянутая, а сам он приземлится намного дальше. Чем большую скорость получает снаряд, тем прямее становится его траектория и тем большее расстояние он пролетает. И, наконец, при определённой скорости траектория снаряда С приобретает форму замкнутой окружности. Снаряд делает один круг вокруг Земли, другой, третий и уже не падает на Землю. Он становится искусственным спутником Земли.

Конечно, пушечные снаряды в космос никто не отправляет. А вот космические аппараты, получившие определённую скорость, спутниками Земли становятся.

Первая космическая скорость

 

Какую же скорость должен получить космический аппарат, чтобы преодолеть земное притяжение?

Минимальная скорость, которую нужно сообщить объекту, чтобы вывести его на околоземную круговую (геоцентрическую) орбиту, называется первой космической скоростью.

Вычислим значение этой скорости относительно Земли.

На тело, находящееся на орбите, действует сила тяготения, направленная к центру Земли. Она же является центростремительной силой, пытающейся притянуть это тело к Земле. Но тело на Землю не падает, так как действие этой силы уравновешивается другой силой – центробежной, которая пытается вытолкнуть его. Приравнивая формулы этих сил, вычислим первую космическую скорость.

 

где m – масса объекта, находящегося на орбите;

M – масса Земли;

v1 – первая космическая скорость;

R – радиус Земли

G – гравитационная постоянная.

M = 5,97·1024 кг, R = 6 371 км. Следовательно, v1 ≈ 7,9 км/с

Значение первой земной космической скорости зависит от радиуса и массы Земли и не зависит от массы тела, выводимого на орбиту.

По этой формуле можно вычислить первые космические скорости и для любой другой планеты. Конечно, они отличаются от первой космической скорости Земли, так как небесные тела имеют различные радиусы и массы. К примеру, первая космическая скорость для Луны равна 1680 км/с.

На орбиту искусственный спутник Земли выводит космическая ракета, разгоняющаяся до первой космической скорости и выше и преодолевающая земное притяжение.

Начало космической эры

Первая космическая скорость была достигнута в СССР 4 октября 1957 г. В этот день земляне услышали позывные первого искусственного спутника Земли. Он был запущен на орбиту с помощью космической ракеты, созданной в СССР. Это был металлический шар с усиками-антеннами, весивший всего 83,6 кг. А сама ракета обладала огромной для того времени мощностью. Ведь для того чтобы вывести на орбиту всего 1 дополнительный килограмм веса, вес самой ракеты должен был увеличиться на 250-300 кг. Но усовершенствование конструкций ракеты, двигателей и систем управления позволило вскоре отправить на земную орбиту гораздо более тяжёлые космические аппараты.

Второй космический спутник, запущенный в СССР 3 ноября 1957 г., весил уже 500 кг. На его борту была сложная научная аппаратура и первое живое существо – собака Лайка.

15 мая 1958 г. на орбиту вышел третий советский спутник, весивший уже 1327 кг.

В истории человечества началась космическая эра.

Вторая космическая скорость

Под действием земного притяжения спутник будет двигаться над планетой по круговой орбите горизонтально. Он не упадёт на поверхность Земли, но и не перейдёт на другую, более высокую орбиту. А чтобы он смог это сделать, ему нужно придать другую скорость, которая называется второй космической скоростью. Эту скорость называют параболической, скоростью убегания, скоростью освобождения. Получив такую скорость, тело перестанет быть спутником Земли, покинет её окрестности и станет спутником Солнца.

Если скорость тела при старте с поверхности Земли выше первой космической скорости, но ниже второй, его околоземная орбита будет иметь форму эллипса. А само тело останется на околоземной орбите.

Тело, получившее при старте с Земли скорость, равную второй космической скорости, будет двигаться по траектории, имеющей форму параболы. Но если эта скорость даже немного превысит значение второй космической скорости, его траектория станет гиперболой.

Вторая космическая скорость, как и первая, для разных небесных тел имеет разное значение, так как зависит от массы и радиуса этого тела.

Вычисляется она по формуле:

Между первой и второй космической скорость сохраняется соотношение

Для Земли вторая космическая скорость равна 11,2 км/с.

Впервые ракета, преодолевшая земное притяжение, стартовала 2 января 1959 г. в СССР. Через 34 часа полёта она пересекла орбиту Луны и вышла в межпланетное пространство.

Вторая космическая ракета в сторону Луны была запущена 12 сентября 1959 г. Затем были ракеты, которые достигли поверхности Луны и даже осуществили мягкую посадку.

Впоследствии космические аппараты отправились и к другим планетам.

ency.info

О гравитации простыми словами.

Общее понятие гравитации

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

-Искусственные спутники никогда не сойдут с орбиты Земли и будут вечно вращаться вокруг неё. Это неправда. Дело в том, что помимо земного притяжения в космосе имеются и другие различные факторы, влияющие на орбиту тел. Это и торможение атмосферы для низких орбит и гравитационные поля Луны и других планет. Скорее всего, если дать спутнику вращаться без контроля на долгое время, его орбита будет изменяться, и в конечном счете он либо улетит в космические просторы, либо упадет на поверхность ближайшего тела.

-В космосе отсутствует гравитация. Даже на станциях, на которых космонавты пребывают в невесомости есть довольно сильная гравитация, чуть меньше, чем на Земле. Почему же тогда они не падают? Можно сказать, что сотрудники станции как бы находятся в состоянии постоянного падения, но никак упадут.

-Объект, приблизившийся к чёрной дыре, будет разорван. Довольно известный миф. Сила притяжение черной дыры действительно увеличится при приближении к ней, но совсем не обязательно, что приливные силы окажутся настолько мощными. Скорее всего они на горизонте событий обладают конечным значением, поскольку расстояние считается от центра дыры.

pikabu.ru

Как называется земное притяжение. Школьная энциклопедия. Когда было открыто земное притяжение

Подробности Категория: Человек и небо Опубликовано 11.07.2014 12:37 Просмотров: 7420

Человечество давно стремилось в космос. Но как оторваться от Земли? Что мешало человеку взлететь к звёздам?

Как мы уже знаем, мешало этому земное притяжение, или гравитационная сила Земли - главное препятствие для космических полётов.

Земное притяжение

Все меняются переменные, подверженные изменениям и репозиционированию космической материи. Планета вращается, но верхняя охлажденная поверхность содержит естественное вязкое сопротивление на расплавленном ядре. Это приводит к независимым электромагнитным импульсам, подобным тем, которые создавал двигатель с железным сердечником. Земля генерирует свое собственное магнитное поле, которое противоположно полюсу входящего солнечного ветра. К значению Земли необходимо указать: вращение расплавленного сердечника, вращение внешней поверхности, орбитальную скорость вокруг Солнца, орбитальную скорость вокруг Черной дыры Млечного Пути, взаимодействие Солнца, Черной дыры и других тел, смещение которых переносится через Гравитационная волна.

Все физические тела, находящиеся на Земле, подчиняются действию закона всемирного тяготения . Согласно этому закону все они притягивают друг друга, то есть действуют друг на друга с силой, которая называется гравитационной силой, или силой тяготения .

Чтобы усугубить проблему, вес Земли включает в себя воду. В прошлом большое количество воды было выровнено на севере и полярных противоположных южных полюсах. Верхняя атмосфера Земли изменилась в дисперсии и химическом составе. Жидкость смещается с каждым поворотным наклоном, позволяя переносить воду на увеличенные приливные сдвиги. Солнечные ветры видны в центральных экваториальных земных массивах. Вода темнее льда, эрго, скорость таяния увеличивается. По мере расширения Вселенной его скорость расширения увеличивается.

Эти элементы составные переменные, которые сокращают их историческую продолжительность жизни. То, что когда-то было событием эпохи, стало событием века. На положительной ноте: все действия имеют противоположную и равную реакцию. Более темные океаны означают больше «парникового эффекта». Лед вернется, когда темные небеса согреют планету. Эффект вобуляции уменьшается.

Величина этой силы прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Так как масса Земли очень велика и значительно превышает массу любого материального тела, находящегося на её поверхности, то сила тяготения Земли значительно больше сил тяготения всех других тел. Можно сказать, что по сравнению с силой тяготения Земли они вообще незаметны.

Тетонический сдвиг пластины, как и в прошлом, создаст новые горные хребты с миграцией океанических водоемов. Каир и Пирамиды были на краю воды. Сахара была на 50% меньше, что уменьшило перекрестный континент ураганов и сезонов Циклонов. В это время человечеству не хватает способности измерять, контролировать и изучать хорошо известный «гамма-луч» и его эквивалент «нейтрино». Гравитация - это сила, с помощью которой планета или другое тело тянет объекты к своему центру. Сила тяжести удерживает все планеты на орбите вокруг Солнца.

Почему люди не падают с поверхности Земли?

Почему вы приземляетесь на землю, когда вы вскакиваете, а не плаваете в космос? Почему все падает, когда вы бросаете их или бросаете? Ответ - сила тяжести: невидимая сила, которая тянет объекты друг к другу. Земная гравитация - это то, что держит вас на земле и что заставляет вещи падать.

Земля притягивает к себе абсолютно всё. Какой бы предмет мы ни бросили вверх, под действием силы тяготения он обязательно вернётся на Землю. Вниз падают капли дождя, вода стекает с гор, осыпается листва с деревьев. Любой предмет, который мы уронили, также падает на пол, а не на потолок.

Главное препятствие для полётов в космос

Анимация гравитации на работе. Альберт Эйнштейн описал гравитацию как кривую в пространстве, которая обтекает объект, такой как звезда или планета. Если другой объект находится поблизости, он втягивается в кривую. Все, что имеет массу, также имеет гравитацию. Объекты с большей массой имеют большую гравитацию. Гравитация также становится слабее с расстоянием. Итак, чем ближе объекты друг к другу, тем сильнее их гравитационное тяготение.

Земная гравитация исходит из всей ее массы. Вся ее масса составляет совокупное гравитационное воздействие на всю массу вашего тела. И если бы вы были на планете с меньшей массой, чем Земля, вы бы весили меньше, чем вы здесь.

Вы оказываете на Земле ту же гравитационную силу, что и на вас. Но поскольку Земля настолько массивнее, чем вы, ваша сила действительно не влияет на нашу планету.

Земное тяготение не даёт возможности летательным аппаратам покинуть Землю. И преодолеть его нелегко. Но человек научился это делать.

Понаблюдаем за мячом, лежащим на столе. Если он скатится со стола, то сила притяжения Земли заставит его упасть на пол. Но если мы возьмём мяч и с силой бросим вдаль, то упадёт он не сразу, а спустя некоторое время, описав траекторию в воздухе. Почему же он смог преодолеть земное притяжение хотя бы на короткое время?

Гравитация - это то, что удерживает планеты на орбите вокруг Солнца и что удерживает луну на орбите вокруг Земли. Гравитационное притяжение Луны тянет моря к ней, вызывая океанские приливы. Гравитация создает звезды и планеты, вытягивая материал, из которого они сделаны.

Есть у всех

Гравитация не только тянет на массу, но и на свет. Альберт Эйнштейн открыл этот принцип. Если вы будете сиять фонариком вверх, свет будет незаметно краснее, когда гравитация потянет его. Вы не можете видеть изменения глазами, но ученые могут его измерить.

А произошло вот что. Мы приложили к нему силу, тем самым сообщив ускорение, и мяч начал двигаться. И чем большее ускорение получит мяч, тем выше будет его скорость и тем дальше и выше он сможет улететь.

Представим себе установленную на вершине горы пушку, из которой выпущен снаряд А с большой скоростью. Такой снаряд способен пролететь несколько километров. Но, в конце концов, снаряд всё равно упадёт на землю. Его траектория под действием земного притяжения имеет изогнутый вид. Снаряд В вылетает из пушки с большей скоростью. Траектория его полёта более вытянутая, а сам он приземлится намного дальше. Чем большую скорость получает снаряд, тем прямее становится его траектория и тем большее расстояние он пролетает. И, наконец, при определённой скорости траектория снаряда С приобретает форму замкнутой окружности. Снаряд делает один круг вокруг Земли, другой, третий и уже не падает на Землю. Он становится искусственным спутником Земли.

Черные дыры упаковывают так много массы в такой маленький объем, что их сила тяжести достаточно сильна, чтобы что-либо, даже свет, не ускользнуло. Гравитация очень важна для нас. Без него мы не могли жить на Земле. Сила Солнца удерживает Землю на орбите вокруг нее, удерживая нас на удобном расстоянии, чтобы наслаждаться солнечным светом и теплом. Это удерживает нашу атмосферу и воздух, который нам нужно дышать. Гравитация - это то, что удерживает наш мир вместе.

Однако гравитация не везде везде на Земле. Гравитация немного сильнее над местами с более массой под землей, чем над местами с меньшей массой. Эти космические аппараты являются частью миссии по гравитационному восстановлению и климатическому эксперименту.

Конечно, пушечные снаряды в космос никто не отправляет. А вот космические аппараты, получившие определённую скорость, спутниками Земли становятся.

Первая космическая скорость

Какую же скорость должен получить космический аппарат, чтобы преодолеть земное притяжение?

Области в синем имеют слегка слабую гравитацию, а области красного цвета имеют немного более сильную гравитацию. Эти изменения выявили важные детали о нашей планете. Сила тяжести, известная тем, что якобы бросает яблоко на голову сэра Исаака Ньютона и тем самым способствует развитию физики, по-прежнему, пожалуй, наименее понятна из стандартных бесконтактных сил, которые также включают электричество и магнетизм.

Мы обвиняем гравитацию во всем поведении в космическом масштабе. Гравитация определяет орбиты планет и астероидов и звезд, она также определяет скорость расширения всей вселенной. Он представляет некоторые из самых волнующих вопросов, с которыми сталкиваются сегодня ученые. Таким образом, мы могли бы сказать, что это очень важно.

Минимальная скорость, которую нужно сообщить объекту, чтобы вывести его на околоземную круговую (геоцентрическую) орбиту, называется первой космической скоростью .

Вычислим значение этой скорости относительно Земли.

На тело, находящееся на орбите, действует сила тяготения, направленная к центру Земли. Она же является центростремительной силой, пытающейся притянуть это тело к Земле. Но тело на Землю не падает, так как действие этой силы уравновешивается другой силой – центробежной, которая пытается вытолкнуть его. Приравнивая формулы этих сил, вычислим первую космическую скорость.

Прежде чем мы сможем понять вопросы о гравитации, с которыми сталкиваются сегодня ученые, давайте начнем с основ. Хотя люди иногда используют «вес» и «массу», чтобы означать одно и то же, это не так. Масса, как мы видели ранее, является неотъемлемым свойством всех объектов. С другой стороны, вес - это сила, соответствующая определенному гравитационному полю, размер которого зависит как от массы объекта, так и от ускорения силы тяжести в этом поле. Масса характерна, а вес - это измерение этой характеристики при определенных условиях.

где m – масса объекта, находящегося на орбите;

M – масса Земли;

v 1 – первая космическая скорость;

Любой объект вблизи поверхности Земли испытывает такое же ускорение, потому что мы находимся примерно на том же расстоянии от центра Земли на его поверхности, поэтому мы испытываем одно и то же гравитационное притяжение. Это Исаак Ньютон, который включил результаты Галилея в ускорение гравитации. Он всегда указывает на центр Земли. Если мы обратимся к негативу в нашей системе отсчета, то мы используем и получаем отрицательную силу.

А как же Луна?

Это сила, которую мы обычно называем «весом». Поскольку ускорение, вызванное гравитацией, изменяется с гравитационным телом, мы ведем меньше на Луне и больше на Юпитере. Однако наша масса постоянна в любом месте. Это сила тяжести, которая меняется. Кто-нибудь хочет знать его или ее вес на Марсе?

R – радиус Земли

G – гравитационная постоянная.

M = 5,97·10 24 кг, R = 6 371 км. Следовательно, v 1 ≈ 7,9 км/с

Значение первой земной космической скорости зависит от радиуса и массы Земли и не зависит от массы тела, выводимого на орбиту.

По этой формуле можно вычислить первые космические скорости и для любой другой планеты. Конечно, они отличаются от первой космической скорости Земли, так как небесные тела имеют различные радиусы и массы. К примеру, первая космическая скорость для Луны равна 1680 км/с.

Гравитационное ускорение на Марсе. Приблизив, что средний ученик средней школы составляет 60 кг, сила тяжести на Марсе. Не зная, сколько весит 60 кг на Земле, у нас нет оснований для сравнения. На Земле весом 60 кг. Поскольку мы более знакомы с весом в килограммах, чем килограммами, мы можем использовать преобразование Земли в 1 кг на 2 фунта, чтобы сказать, что этот самый 60 кг человек весит 132 фунта на Земле, но это преобразование не работает для Марса: фунты там не то же самое.

Универсальный закон гравитации

Сэр Исаак Ньютон обнаружил, что небесные тела, такие как наша Луна и Земля, тянутся к всем другим небесным телам. Сила, ответственная за это, ослабляется как квадрат расстояния, отделяющего взаимодействующие массы, так называемый «закон обратного квадрата». Эти две силы равны между собой, потому что они являются парной реакции действий из Третьего закона движения Ньютона.

На орбиту искусственный спутник Земли выводит космическая ракета, разгоняющаяся до первой космической скорости и выше и преодолевающая земное притяжение.

Начало космической эры

Первая космическая скорость была достигнута в СССР 4 октября 1957 г. В этот день земляне услышали позывные первого искусственного спутника Земли. Он был запущен на орбиту с помощью космической ракеты, созданной в СССР. Это был металлический шар с усиками-антеннами, весивший всего 83,6 кг. А сама ракета обладала огромной для того времени мощностью. Ведь для того чтобы вывести на орбиту всего 1 дополнительный килограмм веса, вес самой ракеты должен был увеличиться на 250-300 кг. Но усовершенствование конструкций ракеты, двигателей и систем управления позволило вскоре отправить на земную орбиту гораздо более тяжёлые космические аппараты.

Эта константа должна была быть вставлена ​​для того, чтобы силы соответствовали наблюдаемым измерениям планетных движений. По сути, то, что понял Ньютон, было истинным гением: сила, из-за которой яблоко падала на землю, была той же силой, тянущей на Луну при вращении Земли!

Напомним: сила между двумя телами ощущается как привлекательная каждым из них и одинаковой величины. Другими словами, каждое действие имеет равную и противоположную реакцию - это третий закон Ньютона, поскольку он применим к гравитации. Сила тяжести на Земле от Луны такая же, хотя и противоположная по направлению, к силе тяжести на Луне с Земли. Третий закон Ньютона повторяет.

Второй космический спутник, запущенный в СССР 3 ноября 1957 г., весил уже 500 кг. На его борту была сложная научная аппаратура и первое живое существо – собака Лайка.

В истории человечества началась космическая эра.

Вторая космическая скорость

Какое гравитационное тяготение оказывает каждое тело на другое? После того, как мы включили все, мы получаем. Ускорение планеты из-за силы тяжести пропорционально ее массе и обратно пропорционально ее квадрату радиуса. Если мы хотим найти ускорение на поверхности планеты или луны или что-то еще, мы используем радиус самого тела для вычисления этого ускорения.

Все ли падает вниз: небольшой эксперимент

Это все еще на три порядка ниже радиуса Земли и существенно не повлияет на какой-либо из наших расчетов. Ответ лежит в круговом движении. Представьте, что вы бросаете мяч или стреляете в пушечное ядро ​​настолько быстро, что, когда он падает вниз к центру земли, его кривые пути такие, что он никогда не может попасть туда, как это. Эта скорость изменяется в зависимости от планеты или луны или любого другого.

Под действием земного притяжения спутник будет двигаться над планетой по круговой орбите горизонтально. Он не упадёт на поверхность Земли, но и не перейдёт на другую, более высокую орбиту. А чтобы он смог это сделать, ему нужно придать другую скорость, которая называется второй космической скоростью . Эту скорость называют параболической , скоростью убегания , скоростью освобождения . Получив такую скорость, тело перестанет быть спутником Земли, покинет её окрестности и станет спутником Солнца.

Техническое название силы, направленной к центру круга, является центростремительным ускорением. Движение по кругу больше связано с углами, чем с расстояниями, задавая проблемы кругового движения, кроме примеров свободных падений и движения снарядов, которые мы видели ранее. Если бы мы могли отрезать окружность круга и выровнять его ровно, динамика появлялась бы как линейное движение с постоянной скоростью.

Так где же ускорение во всем этом? Чтобы ответить на этот вопрос, нам нужно подумать о том, что заставляет объект двигаться по кругу. Чтобы оставаться на круговом пути, объект должен постоянно меняться, что означает, что объект не имеет постоянной скорости и поэтому должен иметь силу и ускорение, действующие на него из первого и второго законов движения Ньютона.

Если скорость тела при старте с поверхности Земли выше первой космической скорости, но ниже второй, его околоземная орбита будет иметь форму эллипса. А само тело останется на околоземной орбите.

Тело, получившее при старте с Земли скорость, равную второй космической скорости, будет двигаться по траектории, имеющей форму параболы. Но если эта скорость даже немного превысит значение второй космической скорости, его траектория станет гиперболой.

Вторая космическая скорость, как и первая, для разных небесных тел имеет разное значение, так как зависит от массы и радиуса этого тела.

Вычисляется она по формуле:

Между первой и второй космической скорость сохраняется соотношение

Для Земли вторая космическая скорость равна 11,2 км/с.

Впервые ракета, преодолевшая земное притяжение, стартовала 2 января 1959 г. в СССР. Через 34 часа полёта она пересекла орбиту Луны и вышла в межпланетное пространство.

Вторая космическая ракета в сторону Луны была запущена 12 сентября 1959 г. Затем были ракеты, которые достигли поверхности Луны и даже осуществили мягкую посадку.

Впоследствии космические аппараты отправились и к другим планетам.

Дети порой бывают очень любопытными и иногда задают вопросы, на которые очень сложно ответить. Например, почему люди не падают с поверхности Земли? Ведь она круглая, вращается вокруг своей оси да еще и перемещается в бескрайних просторах Вселенной среди огромного количества звезд. Почему при этом человек может спокойно ходить, сидеть на диване и совершенно не беспокоиться? К тому же некоторые народы так и живут «вверх ногами». Да и бутерброд, который уронили, падает на землю, а не летит в небо. Может, что-то притягивает нас к Земле и мы не может оторваться?

Почему люди не падают с поверхности Земли?

Если ребенок начал задавать подобные вопросы, то можно рассказать ему о гравитации, или по-другому - о земном притяжении. Ведь именно это явление заставляет любой предмет стремиться к поверхности Земли. Благодаря гравитации человек не падает и не улетает.

Земное притяжение позволяет населению планеты спокойно перемещаться по ее поверхности, возводить здания и всевозможные сооружения, кататься на санках или лыжах с горы. Благодаря гравитации предметы падают вниз, а не летят вверх. Чтобы проверить это на деле, достаточно подбросить мяч. Он в любом случае упадет на землю. Вот почему люди не падают с поверхности Земли.

А как же Луна?

Конечно, земное притяжение не позволяет человеку падать с Земли. Но возникает другой вопрос - почему Луна на нее не падает? Ответ очень прост. Луна движется постоянно по орбите нашей планеты. Если же остановится, то он обязательно упадет на поверхность планеты. Это также можно проверить, проведя небольшой эксперимент. Для этого нужно привязать веревочку к гайке и раскрутить ее. Она будет перемещаться в воздухе до тех пор, пока не остановится. Если же прекратить раскручивание, то гайка просто упадет. Стоит также отметить, что гравитация Луны примерно в 6 раз слабее земного притяжение. Именно по этой причине здесь ощущается невесомость.

есть у всех

Силой притяжения обладают практически все предметы: животные, машины, здания, люди и даже мебель. И человек не притягивается к другому человеку только потому, что наша гравитация достаточно мала.

Сила притяжения напрямую зависит от расстояния между отдельными телами, а также от их массы. Так как человек весит очень мало, он притягивается не к другим предметам, а именно к Земле. Ведь ее масса значительно больше. Земля очень большая. Масса нашей планеты огромна. Естественно, и сила притяжения велика. Благодаря этому все предметы притягиваются именно к Земле.

Когда было открыто земное притяжение?

Для детей бывают неинтересны скучные факты. Но история открытия земного притяжения достаточно странная и забавная. был открыт Исааком Ньютоном. Ученый сидел под яблоней и размышлял о Вселенной. В этот момент ему на голову упал плод. В результате этого ученый осознал, что все предметы падают именно вниз, потому что существует сила притяжения. продолжил свои исследования. Ученый установил, что сила гравитации зависит от массы тел, а также от расстояния между ними. Он также доказал, что на большом расстоянии предметы не способны влиять друг на друга. Так и возник закон гравитации.

Все ли падает вниз: небольшой эксперимент

Чтобы ребенок мог лучше понять, почему люди не падают с поверхности Земли, можно провести небольшой эксперимент. Для этого потребуются:

Стакан необходимо наполнить жидкостью до самых краев. После этого емкость следует накрыть картоном так, чтобы внутрь не попал воздух. После этого нужно перевернуть стакан дном вверх, придерживая при этом картон рукой. Лучше всего проводить эксперимент над раковиной.

Что же произошло? Картон и вода остались на месте. Дело в том, что внутри емкости совершенно нет воздуха. Картон и вода неспособны преодолеть давление воздуха снаружи. Именно по этой причине они остаются на своих местах.

crazylike.ru

Всемирный закон тяготения: точная формула силы всемирного притяжения, определение гравитации

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к движению тел.

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу, остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции.

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к Солнцу, но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает потенциальной энергией? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

где:

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное. Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. Земля тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

P = mg,

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

.

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

.

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с2.

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙106 м.
  • Масса Земли равна: M ≈ 6∙1024 кг.
  • Масса Солнца равна: Mc ≈ 2∙1030 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙1010 м.

Гравитационное притяжение между человеком и Землей:

.

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

.

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

.

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше.

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с2, а почти м/с2. Именно по этой причине там настолько разряженный воздух, частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

.

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в   раз больше первой:

.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

uchim.guru


Смотрите также

Календарь

ПНВТСРЧТПТСБВС
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Мы в Соцсетях

 

vklog square facebook 512 twitter icon Livejournal icon
square linkedin 512 20150213095025Одноклассники Blogger.svg rfgoogle