Супрессоры что это такое


Защитный диод(супрессор): принцип работы, как проверить TVS-диод.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод, наиболее часто выполняемый из кремния, может носить название:

  • Супрессора;
  • Ограничительного стабилитрона;
  • Диодный предохранитель;
  • TVS-диода;
  • Трансила;
  • Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

  • Защита наземных приборов от воздействия природных явлений (удары молний);
  • Защита авиатехники;
  • Страховка от воздействия импульсов электрической природы при неисправности питающего блока.[/google_font]

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Значимые характеристики защитных диодов

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

Значение является показателем постоянного обратного напряжения. VRWM.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2  ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

  • Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
  • Телекоммуникации;
  • Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
  • Цифровой интерфейс.

 Как правильно подобрать защитный диод?

 Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

  1. Определиться с типом напряжения (будет оно переменным или постоянным?);
  2. TVS потребуется одно- или двунаправленный;
  3. Узнать каков уровень номинального напряжения на линии, которую надо будет защищать;
  4. Осведомиться о максимальном значении Iогр. и Uогр.max. в условиях нагрузки;
  5. Выявить верхнюю и нижнюю температурную границу, при которой будет работать прибор;
  6. Решить, каким образом будет монтироваться элемент (поверхностно/с помощью отверстий);
  7. С опорой на все выявленные данные необходимо определиться с подходящей серией и оптимальным вариантом диода.

Кроме того, нужно учесть:

  • Насколько велико обратное напряжение диода (оно должно превышать номинальное напряжение схемы, если данный момент не учитывается, то диод будет «включаться» даже не имея на то причин);
  • Уровень Uогр. обязан быть меньше Umax. на линии, которую требуется защищать;
  • Что даже если диод выбран в соответствии со всеми нуждами, его действие всё равно нужно проверить во всём необходимом температурном диапазоне;
  • Удостовериться в том, что размеры диода и прочие нюансы позволяют его адекватный монтаж.

elektronchic.ru

Полупроводниковая защита: обзор основных серий TVS-диодов от Littelfuse

19 декабря 2014

Компания Littelfuse предлагает широкий выбор различных TVS-диодов как для поверхностного монтажа, так и для монтажа в отверстия, с пиковой мощностью 0,2…30 кВт, с уровнями постоянного обратного напряжения 5…512 В. Все достоинства TVS-диодов Littelfuse по сравнению с другими типами защитных элементов (газоразрядниками, варисторами, тиристорами) и оптимальные области их применения – в предлагаемой статье.

Защита электронных схем от перенапряжений, вызванных различными видами помех, является одной из основных задач при разработке электроники.

Помехи имеют различную природу и отличаются по уровню мощности. Например, импульсы, возникающие при грозовых разрядах, имеют колоссальную энергию и амплитуду напряжения в тысячи вольт. Значительно меньшей энергией обладают выбросы при коммутации индуктивных нагрузок. В слаботочных цепях, в основном, возникают маломощные помехи.

Очевидно, что при таком разбросе мощностей нет возможности использовать некое универсальное защитное устройство. Для выбросов высоких энергий используют газовые разрядники и защитные тиристоры. Для помех средней и малой мощности применяют TVS-диоды и варисторы.

Каждый из перечисленных защитных элементов имеет достоинства и недостатки, но общий принцип функционирования для них одинаков. Его легко продемонстрировать на примере TVS-диода (рисунок 1). TVS включается параллельно защищаемой нагрузке. В нормальных условиях он находится под обратным смещением и практически не влияет на работу схемы. При возникновении высоковольтного импульса происходит обратимый пробой диода. Благодаря этому входное напряжение ограничивается на уровне напряжения пробоя.

Рис. 1. Принцип работы TVS-диода

Существует множество производителей TVS-диодов. Одним из них является компания Littelfuse. Она имеет богатую историю, которая началась в 1927 году с выпуска защитных плавких предохранителей. С тех пор номенклатура производимых компонентов значительно расширилась. Сейчас разработчикам предлагаются плавкие предохранители, самовосстанавливающиеся предохранители PPTC, защитные тиристоры, мощные полупроводниковые модули и многое другое.

Одним из достоинств продукции Littelfuse является высочайшее качество, о котором говорит хотя бы тот факт, что с 1960 года компания Littelfuse плотно сотрудничает с национальным авиакосмическим агентством NASA.

Номенклатура TVS-диодов Littelfuse достаточно обширна, в ней представлены различные супрессоры:

  • Одно- и двунаправленные;
  • с уровнями постоянного обратного напряжения 5…530 В;
  • для поверхностного монтажа с уровнями мощности 200…5000 Вт;
  • для монтажа в отверстия с уровнями мощности 0,4…30 кВт;
  • с уровнями токов до 15000 А.

Свойства TVS-диодов значительно отличаются свойств диодов и стабилитронов. Это достигается за счет применения ряда конструктивных особенностей.

Устройство и принцип работы TVS-диодов

TVS-диоды должны обладать следующими качествами:

  • работа при обратном напряжении должна быть устойчивой;
  • уровень обратных токов при отсутствии помех должен быть минимальным, чтобы не влиять на работу остальной части схемы;
  • скорость срабатывания для подавления быстрых помех должна быть минимальной;
  • уровень рассеиваемой мощности для подавления мощных помех должен быть максимальным;

Несложно заметить, что требования оказываются достаточно противоречивыми. Чтобы увеличить допустимую мощность, нужно улучшить качество теплоотвода. Для этого требуется увеличивать площадь p-n-перехода. Это, в свою очередь, приведет к возрастанию обратных токов. В общем случае, площадь p-n-перехода в TVS значительно больше, чем у обычных диодов, и обратные токи также велики.

Достичь большой площади p-n-перехода можно за счет создания «плоских» переходов. Для двунаправленных TVS-диодов структура оказывается симметричной (рисунок 2).

Рис. 2. Конструкция двунаправленного защитного диода

Принцип работы защитного диода основан на применении обратимого пробоя. Если к TVS приложить напряжение амплитудой больше определенного уровня VBR (напряжение пробоя), начнется пробой с лавинообразным увеличением носителей. Ток, проходящий через диод, практически неограниченно возрастает, а напряжение почти не изменяется. В итоге происходит ограничение входного напряжения. Таким образом, TVS-диод может находится в двух состояниях: выключенном и в режиме ограничения.

Стоит отметить, что TVS не является идеальным защитным ограничителем. Во время пробоя, при увеличении тока, напряжение на диоде возрастает, хотя и незначительно. Это приводит к тому, что уровень ограничения зависит от мощности помехи: чем мощнее помеха, тем выше напряжение ограничения.

Рост напряжения при увеличении тока отражается на наклоне вольт-амперной характеристики TVS (ВАХ).

Основные параметры TVS-диодов

Смысл основных электрических параметров TVS легко пояснить с помощью его ВАХ (рисунок 3). Для однонаправленных диодов она имеет несимметричный вид, для двунаправленных – симметричный.

Рис. 3. ВАХ TVS-диодов

ВАХ TVS отличается от характеристики идеального защитного ограничителя. Во-первых, в выключенном состоянии TVS имеет достаточно большие обратные токи. Во-вторых, переход из области выключенного состояния в режим ограничения происходит не скачком, а плавно. В-третьих, ВАХ в режиме ограничения имеет наклон – напряжение зависит от величины тока.

Рис. 4. Зависимость пиковой мощности от длительности импульса

Для того чтобы учесть все перечисленные особенности, в документации на TVS-диоды всегда приводят характерные значения следующих токов и напряжений:

Постоянное обратное напряжение (VR, Stand-off Voltage), В – максимальное напряжение, которое можно приложить к TVS без его включения.

Ток утечки (IR, Reverse Leakage Current), мА – обратный ток, протекающий через TVS при напряжении VR и при заданной температуре окружающей среды (обычно 25°С). В измерительных цепях важно выбирать TVS с минимальными токами утечки, чтобы избежать искажения полезных сигналов. Например, при защите измерительных цепей резистивных датчиков с токами питания в диапазоне десятков миллиампер ток утечки TVS не должен превышать десятков микроампер.

Напряжение пробоя (VBR, Breakdown Voltage), В, характеризует величину напряжения пробоя. При этом пробой определяется по достижению заданного значения тока пробоя IT при заданной температуре окружающей среды. Значение IT обычно выбирается равным 1 или 10 мА.

В документации, как правило, приводят не конкретное значение напряжения пробоя, а некоторый гарантируемый диапазон.

Напряжение ограничения (VC, Clamping Voltage) характеризует падение напряжения на TVS при протекании заданного пикового тока IPP при заданной температуре окружающей среды.

Максимальный пиковый ток (IPP, Maximum Peak Pulse Current), А – ток который может пропустить супрессор без повреждения.

Для однонаправленных TVS в дополнение к перечисленным параметрам приводятся значения прямого падения напряжения и тока (VF, IF).

Пиковая мощность (PPPM, Peak Pulse Power Dissipation), Вт – значение максимальной мощности при заданной длительности импульса и заданной температуре окружающей среды.

Пиковая мощность имеет сильную зависимость от длительности приложенного импульса (рисунок 4). При выборе TVS для конкретного приложения следует тщательно изучить стандарты с требованиями к электромагнитной совместимости (ЭМС). В них указывается амплитуды, длительности и другие параметры возможных помех.

Рис. 5. Зависимость пиковой мощности и пикового тока от температуры окружающей среды

Выше было неоднократно указано, что значения электрических параметров указываются для конкретных значений температуры. Рост температуры приводит к уменьшению допустимых значений пиковой мощности и токов (рисунок 5).

Важно упомянуть и дополнительные параметры TVS.

Емкость (С, Capacity), пФ, характеризует собственную емкость TVS. Этот параметр является достаточно противоречивым.

С одной стороны, чем больше емкость, тем эффективнее будет ограничение помех. Фактически ограничение помехи начинается благодаря заряду емкости еще до того, как начнется пробой.

С другой стороны, большая емкость будет негативным фактором в случае использования в быстродействующих цепях, так как будет вносить задержку в распространение сигналов.

Тепловое сопротивление «переход-вывод» (RuJL, Typical Thermal Resistance Junction to Lead) или тепловое сопротивление «переход – окружающая среда» (RuJA, Typical Thermal Resistance Junction to Ambient). Эти параметры важны при учете возможностей увеличения пиковой мощности за счет увеличения теплоотвода. Теплоотвод улучшается при использовании радиаторов и при монтаже на плату.

Анализ особенностей TVS показывает наличие и ряда недостатков. С одной стороны, TVS не являются идеальными ограничителями напряжения. Степень ограничения зависит от мощности помехи (рисунок 6). С другой стороны, характеристики TVS зависят от температуры окружающей среды. Однако во многих случаях TVS являются более оптимальным выбором по сравнению с другими защитными компонентами, такими как разрядники, варисторы, тиристоры.

Рис. 6. Особенности ограничения входного импульса напряжения

Сравнение характеристик защитных ограничителей напряжения

Для определения наиболее оптимальных областей применения для TVS-диодов проведем их качественное сравнение с другими типами защитных ограничителей напряжения, производимых компанией LittelFuse. Среди таких ограничителей можно выделить газоразрядные лампы, защитные тиристоры SIDACtor®, варисторы.

При анализе следует рассматривать основные эксплуатационные характеристики: уровни пиковых токов, диапазоны доступных напряжений ограничения, точность обеспечения напряжений ограничения, собственную емкость, эффективность ограничения выбросов, напряжение в режиме ограничения, соотношение габаритов и максимальной токовой нагрузки (таблица 1).

Таблица 1. Сравнительный анализ защитных ограничителей напряжения

Параметр Газовые разрядники Защитные тиристоры SIDACtor® Варисторы TVS
Уровень пиковых токов высокий средний высокий средний
Минимальное напряжение включения, В 75 8 6 6
Точность напряжения включения низкая высокая низкая высокая
Эффективность ограничения выбросов напряжения средняя высокая средняя высокая
Типовая емкость, пФ ~1,5 ~30 ~1400 ~100
Соотношение «пиковый ток/габариты» низкое среднее высокое среднее
Время срабатывания большое среднее большое малое

Сравнение показывает, что все ограничители имеют свои особенности и специфику. По этой причине каждый из них находит свою область применения.

Газовые разрядники применяются для защиты оборудования от самых мощных помех. Для них пиковые токи составляют тысячи ампер. При этом число защитных срабатываний оказывается достаточно большим. Среди недостатков можно отметить большое значение напряжения в режиме ограничения и невысокое быстродействие. Это не позволяет использовать разрядники для низковольтных цепей. Еще одним недостатком можно считать большие габариты.

Тиристоры SIDACtor® используются для защиты от менее мощных помех. В сравнении с газоразрядными лампами они имеют лучшую эффективность ограничения. Это значит, что напряжение ограничения для них не так сильно зависит от тока, как для разрядников. Еще одним достоинством тиристоров является их надежность и долгий срок службы.

Главными достоинствами варисторов являются высокое соотношение пиковых токов и габаритов. Благодаря последнему обстоятельству, варисторы оптимальны для создания максимально компактных решений при защите от мощных помех. Их применяют как в источниках питания переменного тока, так и при защите низковольтных линий питания постоянного напряжения (например, в стандартных компьютерных интерфейсах).

TVS-диоды имеют наименьшее значения напряжений ограничения и самое быстрое время срабатывания. Его точность оказывается лучшей среди всех перечисленных приборов защиты. Эти факторы позволяют применять TVS не только для защиты линий питания, но и для защиты сигнальных, и даже логических линий.

Рис. 7. Примеры применения TVS -диодов

Если анализировать типовые области применения TVS-диодов, то среди них можно выделить следующие основные группы (рисунок 7):

  • силовую электронику: (источники питания постоянного напряжения, драйверы электродвигателей, инверторы и так далее);
  • телекоммуникационные системы;
  • управляющие схемы (защита выходов и входов операционных усилителей, затворов транзисторов, входные и выходные линии, в том числе линии логических сигналов, и так далее);
  • цифровые интерфейсы (USB, RS-485, RS-232, CAN и другие).

Компания Littelfuse выпускает широкий спектр защитных TVS-диодов для различных приложений.

Обзор TVS-диодов компании Littelfuse

Серии TVS производства компании Littelfuse отличаются высокими рабочими характеристиками и выпускаются для различных видов монтажа (рисунок 8).

  • Серии TVS малой и средней мощности для поверхностного монтажа (SMF, SMAJ, P4SMA, SMA6J, SMA6L, SACB, SMBJ, P6SMB, 1KSMB, SMCJ, 1.5SMC, SMDJ, 5.0SMDJ) имеют четыре варианта корпусного исполнения. Они предназначены для поглощения выбросов мощностью до 5000 Вт.
  • Серии TVS малой и средней мощности для монтажа в отверстия (P4KE, SA, SAC, P6KE, 1.5KE, LCE, 3KP, 5KP, SLD) выпускаются в четырех вариантах корпусов и имеют пиковую мощность до 5000 Вт.
  • Серии TVS большой мощности для монтажа в отверстия (15KPA, 20KPA, 30KPA, AK1, AK3, AK6, AK10, AK15) используются для защиты от мощных выбросов напряжения мощностью до 30 кВт.

Компания Littelfuse также выпускает специализированные серии супрессоров для автомобильных приложений. Они способны работать в максимально жестких условиях.

Рис. 8. Варианты корпусных исполнений TVS-диодов производства компании LittelFuse

Наименования супрессоров Littelfuse унифицированы и состоят из пяти составляющих: названия серии, рейтинга напряжения, полярности (однонаправленные/двунаправленные), точности напряжения, типа упаковки (таблица 2).

Таблица 2. Наименования TVS-диодов производства компании LittelFuse

Рейтинг напряжения для ряда серии указывает на минимальное значение постоянного обратного напряжения. Для некоторых серий в названии указывается номинальное напряжение напряжения пробоя.

TVS-диоды поверхностного монтажа производства Littelfuse предназначены для создания компактных схем защиты от выбросов напряжения малой и средней мощности. Все серии имеют диапазон рабочих температур -65…150°C.

Для портативных устройств, критичных к габаритам электронных компонентов, идеально подойдут однонаправленные TVS серии SMF. Они выпускаются в корпусах SOD-123, длина которых не превышает 3,9 мм, а ширина – менее 2 мм. При этом их пиковая мощность составляет 200 Вт.

Представители серий SMAJ и P4SMA имеют пиковую мощность 400 Вт. Доступны как однонаправленное, таки в двунаправленное исполнения. Для обеих серий используется стандартный корпус DO-214AC.

Такой же корпус имеют диоды серии SMA6L. Однако их мощность составляет уже 600 Вт. Номенклатура серии состоит всего из двух представителей с уровнями постоянного обратного напряжения 5 и 12 В.

Серия SMA6L имеет такую же пиковую мощность, как и у SMA6J, но выбор уровней постоянного обратного напряжения для нее гораздо шире – 5…80 В.

Серии SMA6L и SMA6J состоят только из однонаправленных диодов.

Серия SACB имеет интересную особенность – в одном корпусе интегрирован TVS и обычный выпрямительный диод. Это дает возможность использовать SACB в цепях переменного напряжения. Впрочем, стоит помнить, что для ограничения импульсов положительной и отрицательной полярности необходимо использовать два разнополярно включенных параллельных SACB.

Серии SMBJ, P6SMB имеют такую же пиковую мощность как и серии SMA6L и SMA6J, но диапазон доступных уровней постоянного обратного напряжения для них существенно шире, он доходит до 440 и 490 В соответственно. Кроме того, SMBJ и P6SMB выполняются как в одно- так в двунаправленной конфигурации.

Наибольшей пиковой мощностью среди TVS в корпусе DO-214AA обладают представители серии 1KSMB (до 1000 Вт).

Серии SMCJ и 1.5SMC выпускаются в корпусе DO-214AB и имеют пиковую мощность 1500 Вт. Для обеих серий доступны одно- и двунаправленные модификации.

Серии SMDJ и 3.0SMDJ имеют мощность 3000 Вт и небольшой диапазон доступных напряжений переключения.

Серия 4.0SMDJ24A состоит из одного представителя с постоянным обратным напряжением 24 В.

Наибольшей пиковой мощностью в 5000 Вт обладают представители серии 5.0SMDJ.

Таблица 3. TVS-диоды для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение пробоя мин., В Напряжение ограничения при максимальном пиковом токе, В Пиковая мощность, Вт Диапазон рабочих температур, °C
SMF SOD-123 5,0…54 6,4…60,0 9,2…87,1 200 -65…150
SMAJ DO-214AC 5,0…440 6,4…492,0 9,2…713,0 400
P4SMA DO-214AC 5,8…495 6,45…522,5 10,5…760 400
SMA6J DO-214AC 5,0…12 6,4…13,3 9,2…19,2 600
SMA6L DO-221AC 5,0…85 6,4…94,4 9,2…137,0 600
SACB DO-214AA 5,0…50 7,6…55,5 10…88,0 500
SMBJ DO-214AA 5,0…440 6,4…492 9,2…713,0 600
P6SMB DO-214AA 5,8…495 6,45…522,5 10,5…760,0 600
1KSMB DO-214AA 5,8…136 6,45…171,0 10,5…246,0 1000
SMCJ DO-214AB 5,0…440 6,4…492 9,2…713,0 1500
1.5SMC DO-214AB 5,8…495 6,45…522,5 10,5…760,0 1500
SMDJ DO-214AB 5,0…170 6,4…242,0 9,2…356,0 3000
3.0SMC DO-214AB 20…30 22,2…36,7 42,0…70,0 3000
4.0SMDJ24A DO-214AB 24 26,7 38,9 4000
5.0SMDJ DO-214AB 12…170 13,3…189,0 19,9…275,0 5000

TVS-диоды малой и средней мощности являются выводными аналогами рассмотренных выше семейств для поверхностного монтажа (таблица 4). Отдельно стоит отметить серию LCE.

Таблица 4. TVS-диоды малой и средней мощности для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение пробоя мин., В Напряжение ограничения при максимальном пиковом токе, В Пиковая мощность, Вт Диапазон рабочих температур, °C
P4KE DO-41 5,8…495 6,45…522,5 10,5…760 400 -65…150
SA DO-15 5,0…180 6,4…200,0 9,2…289,0 500
SAC DO-15 5,0…50 7,6…55,5 10…88,0 500
P6KE DO-15 5,8…512 6,45…570,0 10,5…828,0 600
1.5KE DO-201 5,8…512 6,45…570,0 10,5…828,0 1500
LCE DO-201 6,5…90 7,22…100,0 11,2…146,0 1500
3KP P600 5,0…220 6,4…244,0 9,2…371,0 3000
5KP P600 5,0…250 6,4…277,0 9,2…425,0 5000

TVS серии LCE, как и серий SAC и SACB, представляют собой интегрированные в одном корпусе TVS и выпрямительный диод. Но, по сравнению с SAC, диоды LCE имеют большую пиковую мощность (1500 Вт) и более широкий диапазон доступных напряжений пробоя.

TVS-диоды большой мощности выпускаются только в выводных исполнениях (таблица 5).

Таблица 5. TVS-диоды большой мощности для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение пробоя мин., В Напряжение ограничения при максимальном пиковом токе, В Пиковая мощность, Вт Диапазон рабочих температур, °C
15KPA P600 17…280 18,99…312,8 29,3…454,5 15000 -65…150
20KPA P600 20…300 26,81…335,1 36,8…483,0 20000
30KPA P600 28…288 31,28…334,0 50,0…484,0 30000
AK1 Radial Lead 76 85 140 -55…150
AK3 Radial Lead 15…430 16,0…440,0 28,0…625,0
AK6 Radial Lead 30…430 32,0…440,0 90,0…625,0
AK10 Radial Lead 30…430 32,0…560,0 58,0…750,0
AK15 Radial Lead 58…76 64,0…85,0 110,0…150,0 -55…125
SLD P600 10…36 11,8…40,0 19,0…60,1 2200 -55…150

Серии 15KPA, 20KPA, 30KPA имеют пиковую мощность, соответственно, 15 кВт, 20 кВт и 30 кВт. Однако минимальные значения постоянного обратного напряжения для них превышают 20 В. Исключением является серия 15KPA, для которой значение обратного напряжения – от 17 В.

Серии AKx имеют радиальное расположение выводов и большую поверхность p-n-переходов. Они оптимизированы для протекания огромных токов до 1 кА (AK1) и до 15 кА (AK15). В первой половине 2015 года ожидается выпуск изделия на ток до 30 кА. При этом ВАХ этих TVS, с учетом отклика на мощные импульсы, имеет ярко выраженную петлю. Данные диоды могут включаться параллельно для увеличения суммарной мощности.

Серия SLD оптимизирована для автомобильных приложений и имеет пиковую мощность 2,2 кВт.

Огромный выбор различных TVS позволяет разработчику найти оптимальный компонент для своего приложения. Инженеры Littelfuse предлагают алгоритм для определения подходящего диода с учетом особенностей приложения.

Алгоритм выбора TVS-диодов Littelfuse:

  • Определить особенности приложения:
    • тип напряжения (переменное/постоянное);
    • необходимость использования одно- или двунаправленных TVS;
    • номинальное напряжение защищаемой линии;
    • максимальное значение тока ограничения;
    • максимально допустимое напряжение ограничения для нагрузки;
    • диапазон рабочих температур;
    • тип монтажа компонентов (поверхностный/ в отверстия).
  • Выбрать подходящую серию и конкретный диод с учетом данных, полученных в предыдущем пункте.

Значение обратного напряжения диода должно быть больше номинального напряжения схемы. В противном случае возможно включение диода даже при отсутствии помех.

Значение токов и мощностей может быть определено с учетом импеданса защищаемой схемы. При расчете, как правило, отталкиваются от параметров помех, указанных в стандартах помехозащищенности.

Напряжение ограничения не должно превышать максимально допустимое значение напряжения защищаемой линии.

  • После выбора диода по рабочим характеристикам следует провести проверку. Необходимо убедиться, что все характеристики отвечают требованиям во всем диапазоне рабочих температур.
  • Проверить соответствие выбранного TVS ограничениям на габаритные размеры и тип монтажа.
  • Провести проверку с помощью опытных образцов. Разработчики могут обратиться к официальному дистрибьютору Littelfuse в России – компании КОМПЭЛ.

Заключение

TVS-диоды имеют существенные конструктивные отличия от обычных диодов. Целью изменений является увеличение значений пиковых токов и мощностей.

Как и другие защитные ограничители напряжения, TVS-диоды имеют особенности применения. Для большого количества приложений именно TVS являются оптимальным выбором. Среди областей их применения можно выделить силовую электронику, цифровые интерфейсы, управляющие и телекоммуникационные схемы.

В номенклатуре Littelfuse представлены TVS-диоды с различными характеристиками:

  • одно- и двунаправленные;
  • с постоянным обратным напряжением 5…530 В;
  • для поверхностного и выводного монтажа;
  • с уровнями мощности 0,4…30 кВт;
  • с уровнями пиковых токов до 15000 А.

Многообразие супрессоров Littelfuse позволяет разработчикам выбирать оптимальные TVS для каждого конкретного приложения.

Литература

  1. TVS Diode Devices. Transient Voltage Suppression. PRODUCT CATALOG & DESIGN GUIDE. 2013, Littelfuse.
  2. Electronics Circuit Protection. Product Selection Guide. 2013, Littelfuse.
  3. Документация на компоненты взята с официального сайта Littelfuse http://www.littelfuse.com/.

Получение технической информации, заказ образцов, заказ и доставка.

PulseGuard – низкоемкостные чип-супрессоры для ESD-защиты

Электростатический разряд (ESD) – это разновидность электрических переходных процессов, представляющих серьезную угрозу для чувствительных электронных схем. Наиболее распространенной причиной появления ESD является трение между разнородными материалами.

Потенциал ESD-помехи может достигать уровня до 15000 В, что может вызывать катастрофические повреждения электронных компонентов в цепи.

PulseGuard® – семейство чип-супрессоров электростатического разряда, разработанное компанией Littelfuse для сигнальных низковольтных цепей. Данные разрядники, изготовленные из полимерных композитов, обладают крайне низкой емкостью (

www.compel.ru

Супрессор

материалы в категории

Что такое супрессор

Супрессор это одна из разновидностей полупроводниковых диодов.А по своим функциям он больше всего похож на стабилитрон: он так-же открывается при определенном напряжении.

Супрессоры были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.

Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. На промышленных предприятиях комплексная защита имеется, но жилые дома в этом случае совершенно не защищены.

По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $ 12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.

Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.

Наименование TVS-диод переводится как Vransient Voltage Suppressor: полупроводниковый ограничитель напряжения.

Обозначение супрессора на схемах

Супрессоры имеют некоторые разновидности, а именно: они могут быть однонаправленными и двунаправленными. А на электрических схемах супрессоры обозначаются так: 

Основные электрические параметры супрессоров

  • U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

  • I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

  • U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM(Working Peak Reverse Voltage). Может обозначаться как VRM.

  • U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VC – Max. Clamping Voltage или просто Clamping Voltage.

  • I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается какIPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

  • P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

    Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Вольт-Амперные характеристики супресоров

ВАХ ограничительных диодов выглядят так:Для однонаправленного супрессора

Для двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.

Схемы включения супрессоров

Одна из возможных схем включения супрессора:

В данном случае получается так: ограничительный диод (супрессор) VD1 установлен между двумя источниками напряжения. В случае возникновения большого импульса хотя-бы на одном входе он пробивается что приведет к перегоранию предохранителей F1 или F2. В промышленной радиоаппаратуре роль предохранителей могут исполнять низкоОмные керамические резисторы

radio-uchebnik.ru

Защита от перенапряжения: что выбрать?

     Защита от коммутационных выбросов напряжения схем на основе тиристоров или транзисторов с полевым управлением – рядовая задача в проектировании практически любого преобразователя. Для выполнения данной задачи существует ряд стандартных схем именуемых снабберными цепями. Снабберы, в свою очередь, могут состоять из пассивных или активных элементов, или могут совмещать их в себе (например, RCD-снабберы). Схемы такого рода цепей хорошо известны и не требуют дополнительного рассмотрения. Но, зачастую, при проектировании снабберов возникает ряд вопросов с выбором элементной базы.

Итак, какой тип конденсатора выбрать? Что лучше –ограничитель или варистор? Можно ли использовать вместо специализированных ограничителей обычные стабилитроны? Таким образом, вопросы с комплектацией могут значительно повлиять на итоговую схему снаббера и как, в таком случае, не ошибиться? Ниже пойдёт речь о типовых проблемах с выбором элементной базы, которые, как показывает практика, чаще всего возникают при проектировании снабберных цепей. Снабберы могут выполнять две функции: снижении скорости нарастания напряжения (C-RC-RCD-снабберы) или ограничение амплитуды выброса напряжения (снабберы на основе супрессоров, стабилитронов или варисторов). Разумеется, эффективнее всего будут работать снабберы выполняющие обе эти функции. Более того, в состав снабберов второго типа, как правило, так или иначе,входят конденсаторы. Конденсатор, в некотором смысле, это основа почти любой снабберной цепи и первый вопрос, возникающий после осуществления теоретических расчётов: какой тип конденсатора выбрать? Существует два основных вида конденсаторов, которые, теоретически, можно использовать в снаббере: это плёночные и керамические конденсаторы. Из отечественного к первой группе, прежде всего, относятся конденсаторы серий К73 и К78; ко второй группе–конденсаторы серий К10 и К15. На практике, в качестве снабберов, самыми подходящими считаются конденсаторы К78-2, но чаще всего применяются К73-17, так же часто применяются керамические конденсаторы К10-17 или К10-69 (для относительно низковольтных схем). Существует мнение, что в качестве снабберов нужно использовать только плёночные конденсаторы, т.к. их паразитные составляющие (особенно паразитная индуктивность и тангенс угла потерь) намного меньше, чем для керамических конденсаторов. Сравниваем тангенс угла потерь: для К78-2–0,001; для К10-69–0,0015; для К73-17–0,008. Отсюда следует, что, вроде бы, керамический конденсатор несущественно хуже плёночного К78-2 и даже гораздо лучше К73-17. Если сравнить паразитную индуктивность плёночных и керамических конденсаторов, то и здесь разницы почти нет: их индуктивность будет составлять от единиц до десятков нГн и даже более того, этот параметр по большей части обусловлен габаритными размерами конденсатора, типами выводов и, в конце концов, качеством монтажа, но не типом. Получается, разницы нет? В своё время нам была поставлена задача заменить конденсатор К73 — 17 на керамические чип-конденсаторы (требование конструкции). В итоге на конденсаторе К73-17 за несколько лет эксплуатации не были ни одного выхода из строя этого конденсатора; с керамическим конденсаторами–два выхода из строя при трёх проведённых испытаниях. Отсюда вывод: плёночные конденсаторы предпочтительнее, но скорее не из- за своих параметров, а из-за своей «живучести». Плёночные конденсаторы гораздо более устойчивы к значениям du/dt и di/dt, к значительным импульсным токам и перенапряжениям и именно поэтому выбор в сторону плёночных конденсаторов–правильный выбор. Конечно, и по паразитным составляющим тоже можно сказать, что плёночные лучше, но это если только речь идёт о специализированных конденсаторах. Например, специализированные снабберные плёночные конденсаторы импортного производства имеют тангенс угла потерь 0,0001 (на порядок лучше К78-2 и почти в сто раз лучше К73-17) и собственную индуктивность в несколько нГн, но это именно специальные конденсаторы. Отсюда вывод: если речь идёт о больших мощностях (от десятков кВт), то однозначно–специализированные снабберные конденсаторы.Если мощность меньше, но напряжение относительно высокое –то так же однозначно плёночные общего назначения; если мощность небольшая и напряжение низкое (например, из практики, при мощности около сотен Вт и напряжении порядка десятков Вольт, проблем со снабберами на керамических конденсаторах не наблюдалось), то можно обойтись керамическими конденсаторами. Т.е., как видим, вопрос выбора типа конденсатора –скорее вопрос надёжности; эффективность же его работы в качестве снаббера–это уже вопросы расчётов и монтажа. Последовательно снабберному конденсатору зачастую (хотя и не обязательно), ставится резистор. Разумеется, мощность и номинал резистора рассчитываются, но, опять же, не каждый резистор можно ставить в снабберную цепь. Как правило, применяются резисторы следующих типов: проволочные, металлоплёночные, углеродистые. Проволочные резисторы категорически не подходят для снабберных цепей по причине недопустимо большой паразитной индуктивности. Металлоплёночные резисторы применять можно, хотя и у них индуктивность оставляет желать лучшего. Наилучший вариант–углеродистые резисторы (например, серия С1-4). Помимо меньшей индуктивности данный тип резисторов выгодно отличается от прочих тем, что они стойки к импульсным токам и импульсам перенапряжения. Хотя, использование металлоплёночных резисторов (самые популярные–С2-33) тоже допустимо. Насчёт диода, если таковой используется в снабберной цепи, пожалуй, говорить не стоит, т.к. понятно, что его пробивное напряжение и допустимый ток должны соответствовать схеме, а время обратного восстановления должно быть как можно меньше. Перейдём к той части снаббера, которая отвечает за ограничение напряжения.

В снабберах, как уже было сказано, с целью ограничения выбросов напряжения могут устанавливаться стабилитроны, ограничители напряжения (супрессоры), и варисторы. Что, для какой схемы и по каким критериям выбрать?

Основными критериями выбора элемента ограничения, помимо собственно пробивного

напряжения, должны являться его мощность и быстродействие. При чём, если мощность можно нарастить последовательной установкой элементов, то сделать быстродействие лучше, чем обеспечивает производитель– не представляется возможным. Из всех представленных ограничителей наибольшим быстродействием обладает супрессор.

Производителями супрессоров заявляется быстродействие порядка нескольких нс, а иногда и меньше. Но это в тестовых схемах. На практике супрессор, если и реагирует почти мгновенно, всё-таки открывается относительно долго и время с момента достижения напряжением пробивного напряжения супрессора до начала спада напряжения импульса обычно составляет около 10 нс и во многом зависит от тока импульса. В схемах с обратными индуктивными выбросами с токами в сотни Ампер время начала ограничения может составлять и вовсе десятки нс, и именно поэтому, к слову сказать, рекомендуется использование ограничителей напряжения совместно с классическими снабберами, обеспечивающими снижение du/dt, в противном случае схема ограничения просто не успевает полноценно сработать. В плане ВАХ прибор почти аналогичный супрессору–стабилитрон. Но если по мощности можно подобрать стабилитрон близкий ограничителю напряжения (в плане допустимой мощности импульса), то по быстродействию стабилитроны значительно уступают супрессору. Конечно, стабилитрон можно использовать в качестве ограничителя, но со скоростями не более нескольких кВ/мкс,в то время как супрессоры могут работать со скоростью изменения напряжения на порядок больше. И если раньше стабилитроны имело смысл использовать в снабберных схемах для изделий специального назначения (т.к.высоковольтных супрессоров с приёмкой «5» не вып ускалось), то сейчас необходимость в этом отпала, т.к. отдельными производителями освоено производство супрессоров «специального назначения». В отличии от супрессора и стабилитрона варистор не является активным элементом, в полном смысле этого слова, представляя собой специализированный резистор. Быстродействие варисторов, как заявляется, составляет порядка нескольких десятков нс. Для сравнения, как уже было отмечено, заявляемое быстродействие супрессоров–около нс. Таким образом, варистор на порядок медленнее супрессора. Эту разницу подтверждает и практический случай: в транзисторном преобразователе значительно грелись ограничители напряжения и было решено попробовать варисторы, т.к. последние могут работать с относительно большими мощностями. В итоге, если схема с ограничителями грелась, но работала без выходов из строя, то схема на варисторах вышла из строя при первом же включении. Однако, указать реальное быстродействие варисторов автор не может, т.к. не имел достаточного опыта работы с ними. Другой, не менее критичный параметр,-предельно-допустимая мощность импульса. Здесь на первом месте стоит варистор, далее– супрессор и стабилитрон. При чём, при равных массогабаритных показателях, супрессор значительно выигрывает у стабилитрона. В итоге область применения варисторов и супрессоров становится очевидной: варисторы применяются в схемах с большой мощностью импульса, но низким (относительно) значением du/dt; супрессоры–наоборот: в схемах с большим du/dt, но кратковременными импульсами. Первый тип схем преобразователей–преобразователи на основе тиристоров (большая мощность, скорость du/dt измеряется в сотнях В/мкс); второй тип–преобразователи на основе IGBT-или MOSFET-транзисторов, ведь именно работа транзисторов в ключевом режиме характеризуется малой длительностью выбросов напряжения (не более сотен нс; очень редко–мкс), но при этом значительным du/dt, до десятков кВ/мкс. Таким образом, если тиристорная схема, то варисторы; если транзисторная, то супрессоры. Стабилитроны тожеможно применять, то только в низковольтных транзисторных схемах с малыми скоростями изменения напряжения.

Например, стабилитроны BZX55C18, установленные в цепи затвора полевого транзистора, ведут себя ни чуть ни хуже симметричных супрессоров типа 1,5КЕ18СА. Как правило, выбор очевиден. Более того, в практике построения снабберов уже сложились определённые «традиции», как в плане схемотехники, так и в плане элементной базы. Конечно, если уже имеется какая-то комплектация и нет возможности или проблематично приобрести другую комплектацию,то можно поставить что-то своё, из того что есть. Но при разработках лучше, всё-таки, закладывать изначально специализированные изделия  и только если такой путь оказывается нерациональным, то можно обратиться к помощи элементов общего назначения. Что именно выбрать и для каких схем–сказано выше.

Содержание данной статьи носит исключительно рекомендательный характер, основывается на личном опыте и, разумеется, не является панацеей от всех проблем. Но, тем не менее, указанные рекомендации могут помочь разработчику в такой задаче, как выбор комплектации для снабберных цепей защиты.

svarka-master.ru

Ген-супрессор опухолей - это... Что такое Ген-супрессор опухолей?

Ген-супрессор опухолей (антионкоген, опухолевый супрессор) — ген, продукт которого обеспечивает профилактику опухолевой трансформации клеток[1]. Белковые продукты генов-супрессоров называют белками-супрессорами или антионкобелками. Кроме того, антионкогены могут кодировать и микроРНК[2]. Гены-супрессоры обычно обнаруживаются при инактивирующих мутациях, которые фенотипически проявляются в формировании опухолей. Функционально гены-супрессоры противоположны онкогенам и часто негативно регулируют деление и рост клеток, а также уход от апоптоза. Наиболее известными белками-супрессорами являются p53, RB и PTEN.

История открытия и развития представлений о генах-супрессорах опухолей

Хотя наследственная предрасположенность к развитию злокачественных опухолей была известна давно, только после повторного открытия законов Менделя в 1900 году стало возможным научное объяснение этого факта. К этому времени уже было известно, что клетки опухолей имеют изменённый набор хромосом. Теодор Бовери внёс вклад в понимание генетики рака: он предположил, что есть хромосомы, которые стимулируют деление клеток, и есть хромосомы, которые его ингибируют[3]. Сегодня мы знаем, что гены обоих типов действительно существуют.

Известные гены-супрессоры опухолей

Rb

TP53

BRCA1

CDKN1A

CDKN1B

PTEN

Ген PTEN у человека кодирует одноимённую фосфатазу PTEN (англ. phosphatase and tensin homologue), которая активна в отношении как белковых, так и липидных субстратов. Впервые этот ген был идентифицирован, как часто мутированный в различных видах раковых опухолей[4][5].

Примечания

  1. ↑ Benjamin Lewin Chapter 30: Oncogenes and cancer // Genes VIII. — Upper Saddle River, NJ: Pearson Prentice Hall, 2004. — ISBN 0131439812
  2. ↑ Lee YS, Dutta A. (2009). «MicroRNAs in cancer.». Annu Rev Pathol. 4: 199—227. PMID 18817506.
  3. ↑ Berger AH, Knudson AG, Pandolfi PP. (2011). «A continuum model for tumour suppression.». Nature. 476: 163—169. DOI:10.1038/nature10275. PMID 21833082.
  4. ↑ Li J., Yen C., Liaw D., Podsypanina K., Bose S., Wang S. I., Puc J., Miliaresis C., Rodgers L., McCombie R., Bigner S. H., Giovanella B. C., Ittmann M., Tycko B., Hibshoosh H., Wigler M. H., Parsons R. (1997). «PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer». Science 275 (5308): 1943—1947. DOI:10.1126/science.275.5308.1943. PMID 9072974.
  5. ↑ Steck P. A., Pershouse M. A., Jasser S. A., Yung W. K., Lin H., Ligon A. H., Langford L. A., Baumgard M. L. , Hattier T., Davis T., Frye C., Hu R., Swedlund B., Teng D. H., Tavtigian S. V. (1997). «Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers». Nat Genet. 15 (4): 356—362. DOI:10.1038/ng0497-356. PMID 9090379.

См. также

dic.academic.ru

компрессор что это такое и как его едят? )))) — DRIVE2

Как работает компрессор?

С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше.

Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. В этой статье мы объясним, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува).

Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» — его официального названия.

Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя.В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу.

Основы компрессора:

Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага:Поршень перемещается внизЭто создает разрежениеВоздух под атмосферным давлением засасывается в камеру сгоранияКак только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса.Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха.

Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.

Рис.1 ProCharger D1SC – центробежный компрессор

В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов.Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания.

Далее мы рассмотрим различные типы компрессоров.

Рис.2 Роторный компрессор

Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках.Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя.

Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров.Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам:Они существенно увеличивают вес транспортного средства.

Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.

Рис.3 Двухвинтовой компрессор

Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство.

Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.

Рис.4 Центробежный компрессор

Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха.

Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля.Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты,состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей.

Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.

Преимущества компрессораСамое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов.Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании.Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя.Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя.Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением.

Далее рассмотрим некоторые недостатки компрессоров.

Недостатки компрессоров:

Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса.Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.

#авто@mensrule

www.drive2.ru


Смотрите также

Календарь

ПНВТСРЧТПТСБВС
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Мы в Соцсетях

 

vklog square facebook 512 twitter icon Livejournal icon
square linkedin 512 20150213095025Одноклассники Blogger.svg rfgoogle