Квантовые компьютеры что это такое


Просто о сложном: что такое квантовый компьютер и зачем он нужен

Евгений Глушков

Студент шестого курса МФТИ, инженер лаборатории искусственных квантовых систем, создатель и редактор ресурса Make It Quantum.

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями — квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки — квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Дальше — больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер — тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности — от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников — материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы — они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин — компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо — привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты — нули и единички, — то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно — кубиты). Сам кубит — вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу — уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств — лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью — разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете — пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело — теоретически придумать кубит, и совсем другое — воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита — нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи — все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер — все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера — вопрос стратегической важности.

Не пропустите лекцию:

theoryandpractice.ru

Суть квантового компьютера

Квантовые компьютеры обещают настоящую революцию, причем не только в вычислениях, но и в реальной жизни. Медиа пестрят заголовками про то, как квантовые компьютеры уничтожат современную криптографию, а мощность искусственного интеллекта, благодаря им возрастет на порядки.

За последние 10 лет квантовые компьютеры прошли путь от чистой теории до первых работающих образцов. Правда, до обещанной революции предстоит пройти еще немалый путь, да и ее влияние в итоге может оказаться не таким всеобъемлющим, как представляется сейчас.

Как работает квантовый компьютер

Квантовый компьютер – устройство, которое использует явления квантовой суперпозиции и квантовой запутанности. Основным элементом в таких вычислениях является кубит, или квантовый бит. За всеми этими словам кроется довольно сложная математика и физика, но если их максимально упростить, то получится примерно следующее.

В обычных компьютерах мы имеем дело с битами. Бит - единица измерения информации в двоичной системе. Он может принимать значение 0 и 1, что очень удобно не только для математических операций, но и для логических, так как нулю можно сопоставить значение «ложно», а единице – «истинно».

Современные процессоры построены на базе транзисторов, полупроводниковых элементов, которые могут пропускать, либо не пропускать электрический ток. Иначе говоря, выдавать два значения 0 и 1. Точно также во флеш-памяти транзистор с плавающим затвором может хранить заряд. Если он есть, мы получаем единицу, если его нет – ноль. Аналогичным образом работает и магнитная цифровая запись, только носителем информации там является магнитная частичка, либо имеющая, либо не имеющая заряд.

При вычислениях мы считываем из памяти значение бита (0 или 1) и затем пропускаем ток через транзистор и в зависимости о того, пропускает он его или нет, получаем на выходе новый бит, возможно, имеющий другое значение.

Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.

Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

Отличается и принцип вычислений. В каком-то смысле квантовый компьютер уже содержит все возможные варианты решения задачи, нашей задачей только является считать состояние кубитов и... выбрать из них правильный вариант. И вот тут начинаются сложности. В этом и заключается принцип работы квантового компьютера.

Создание квантового компьютера

Какой будет физическая природа квантового компьютера? Добиться квантового состояния можно только у частиц. Кубит не построишь из нескольких атомов, как транзистор. Пока эта проблема до конца не решена. Есть несколько вариантов. Используются зарядовые состояния атомов, например, присутствие или отсутствие электрона в обычной точке, сверхпроводящие элементы, фотоны и т.д.

Столь «тонкие материи» накладывают ограничения и на измерения состояния кубитов. Энергии крайне малые, необходимы усилители, чтобы прочитать данные. Но усилители могут оказывать воздействия на квантовую систему и менять ее состояния, впрочем, не только они, но даже сам факт наблюдения может иметь значение.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами. Те в свою очередь ведут за собой изменения всей системы. Задача выбрать из ее состояний правильное, дающее результат вычислений. При этом может быть сколь угодно много состояний, максимальное приближенных к таковому. Соответственно, точность таких вычислений почти всего будет отличаться от единицы.

Таким образом, для полноценного квантового компьютера нужны значительные достижения в физике. Кроме того, программирование для квантового компьютера будет отличаться от существующего сейчас. Наконец, квантовые компьютеры не смогут решить задачи, которые не под силу обычным, но в состоянии ускорить решения тех, с которыми они справляются. Правда, опять же не все.

Счет на кубиты, кубитный квантовый компьютер

Постепенно проблемы на пути к квантовому компьютеру снимаются. Первые кубиты были построены еще в начале века. Процесс ускорился в начале десятилетия. Сегодня разработчики уже в состоянии произвести процессоры с десятками кубитов.

Последним по времени прорывом стало создание процессора Bristlecone в недрах Google. В марте 2018 года компания заявила, что смогла построить 72-кубитный процессор. На каких физических принципах построен Bristlecone Google не сообщает. Однако считается, что для достижения «квантового превосходства», когда квантовый компьютер начинает превосходить обычный, достаточно 49 кубитов. Google удалось выполнить это условие, но уровень ошибок в 0,6% пока выше требуемого в 0,5%.

Осенью 2017 года IBM объявила о создании прототипа 50-кубитового квантового процессора. Он проходит тестирование. Но в 2017 году IBM открыла свой 20-кубитовый процессор для облачных вычислений. В марте 2018 года была запущена меньшая версия IBM Q. Ставить эксперименты на таком компьютере могут все желающие. По их результатам уже вышло 35 научных работ.

Еще в начале 10-летия на рынке появилась шведская компания D-Wave, которая позиционировала свои компьютеры как квантовые. Она породила множество споров, так как объявляла о создании 1000-кубитных машин, в то время как признанные лидеры «ковырялись» всего лишь с парой кубитов. Компьютеры шведских разработчиков продавались по цене в $10-15 миллионов, так что проверить их было не так просто.

Компьютеры D-Wave не являются квантовыми в прямом смысле этого слова, но используют некоторые квантовые эффекты, которые можно применять для решения некоторых задач оптимизации. Иначе говоря, не все алгоритмы, которые могут быть выполнены на квантовом компьютере, получают на D-Wave квантовое ускорение. Google приобрела одну из систем шведов. В результате ее исследователи признали компьютеры «ограниченно квантовыми». При этом выяснилось, что кубиты сгруппированы кластерами по восемь, то есть их реальное число заметно меньше, чем декларируемое.

Квантовый компьютер в России

Традиционно сильная школа физики позволяет внести существенный вклад в решение физических проблем для создания квантового компьютера. В январе 2018 года россияне создали усилитель сигнала для квантового компьютера. Учитывая, что своей работой усилитель сам по себе способен влиять на состояние кубитов, уровень генерируемого им шума должен мало отличаться от «вакуумного». Это и удалось российским ученым из лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и двух институтов РАН. Для создания усилителя использовались сверхпроводники.

В России также создан квантовый центр. Это негосударственная исследовательская организация, занимающаяся исследованиями в области квантовой физики. В том числе она занимается проблемой создания кубитов. За центром стоит бизнесмен Сергей Белоусов и профессор Гарвардского университета Михаил Лукин. Под его руководством в Гарварде уже был создан 51-кубитовый процессор, который некоторое время до анонса Bristlecon был самым мощнейшим квантовым компьютером устройством в мире.

Развитие квантовых вычислений стало частью госпрограммы «Цифровая экономика». В 2018-20 года на работы в этой сфере будет выделяться господдержка. Планом мероприятий предусмотрено создание квантового симулятора на восьми сверхпроводниковых кубитах. После этого будет решаться вопрос дальнейшего масштабирования данной технологии.

Кроме того, до 2020 года в России собираются опробовать еще одну квантовую технологию: построение кубитов на нейтральных атомах и заряженных ионах в ловушках.

Одной из целей программы является создание устройств квантовой криптографики и квантовых коммуникаций. Будут созданы центры распределения квантовых ключей, которые будут их раздавать потребителям – банкам, дата-центрам, отраслевым предприятиям. Считается, что полноценный квантовый компьютер может за считанные минуты сломать любой современный алгоритм шифрования.

В итоге

Итак, квантовые компьютеры пока все еще остаются экспериментальными. Маловероятно, что полноценный квантовый компьютер, обеспечивающий действительно высокую вычислительную мощность, появится раньше следующего десятилетия. Производство кубитов и построение из них стабильных системы все еще далеко от совершенства.

Судя по тому, что на физическом уровне квантовые компьютеры имеют несколько решений, которые отличаются технологиями и, вероятно, стоимостью, они не будут унифицированы еще лет 10. Процесс стандартизации может растянуться надолго.

Кроме того, уже сейчас понятно, что квантовые компьютеры и в течение следующего десятилетия, скорее всего, будут «штучными» и очень дорогими устройствами. Вряд ли они окажутся в кармане у простого пользователя, но списке суперкомпьютеров можно ожидать их появления.

Вероятно, что квантовые компьютеры будут предлагаться в «облачной» модели, когда их ресурсы смогут задействовать заинтересованные исследователи и организации.

xdrv.ru

Существуют ли квантовые компьютеры на самом деле? — Meduza

Перейти к материалам

Просто: В СМИ опять поднялась шумиха про квантовые компьютеры будущего.

Сложнее: В Google объявили, что принадлежащий компании квантовый компьютер D-Wave решил поставленную задачу в 100 миллионов раз быстрее, чем обычный компьютер. Эта новость стала поводом для нового обсуждения одного из самых ожидаемых технологических прорывов. Разработку настоящего квантового компьютера можно сравнить с мечтой о лекарстве от рака или болезни Альцгеймера, термоядерной энергии и колонизации Марса. «Медуза» попросила научного журналиста Сергея Немалевича объяснить, существуют ли уже настоящие квантовые компьютеры и чем они лучше обычных. 

Просто: Потому что они очень быстрые.

Сложнее: В не очень далеком будущем квантовые компьютеры могут стать необходимостью. Потребности человечества в производительности компьютерных процессоров уже сейчас обгоняют развитие классической электроники. Есть знаменитый закон Мура, описывающий скорость роста производительности процессоров: число транзисторов на кристалле интегральной схемы удваивается каждые два года. Сейчас этот закон уже не совсем выполняется — число транзисторов удваивается раз в 2,5 года. Так или иначе, производительность традиционных процессоров не может расти до бесконечности. Никто не знает, когда понадобится качественный скачок, но рано или поздно он обязательно понадобится. И создание квантового компьютера, способного решать некоторые важные вычислительные задачи гораздо быстрее обычного, — одно из возможных направлений развития. 

Просто: В обычных информация хранится в битах — нулях или единицах, а в квантовых — в кубитах. Кубиты могут как бы находиться одновременно в двух состояниях: содержать ноль и единицу сразу. Благодаря этому теоретически квантовый компьютер может работать быстрее.

Сложнее: Как понятно из названия, квантовый компьютер использует феномены квантовой механики. В микромире, живущем по законам квантовой механики, возможны явления, немыслимые в привычном нам макромире. Например, частица может находиться в суперпозиции — сразу в двух состояниях. Есть популярная метафора: представьте подброшенную в воздух монету, которая одновременно и орел, и решка. Грубо говоря, примерно так же устроена работа кубита — основной единицы хранения информации в квантовом компьютере. 

Другой эффект называется квантовой зацепленностью: состояния двух частиц могут быть взаимосвязаны и меняться одновременно, даже если эти частицы находятся в разных уголках галактики. Благодаря квантовой зацепленности кубиты можно собирать в связанные между собой наборы. Если набор из N классических бит хранит последовательность из N нулей и единиц, то в регистре из N кубит записано несравнимо больше информации — суперпозиция всех возможных последовательностей из N нулей и единиц.

Поймав монету, мы видим, что она выпала либо орлом, либо решкой — вероятность 50 на 50. Так же, измеряя состояние кубита, мы получим ноль, либо один; только — в отличие от монеты — вероятности получения каждого из двух значений не равны. Вот эти вероятности и «записаны» в суперпозиции. А если измерить значение квантового регистра, получится только одна последовательность нулей и единиц, но, опять же, с некоторой вероятностью, которая — в виде коэффициента — хранилась в исходном квантовом состоянии.

Квантовая ячейка памяти содержит не конкретную единицу информации, а набор вероятностей получения любой возможной единицы информации при измерении. И если классический процессор за один такт изменяет последовательность из N нулей и единиц, то квантовый процессор изменяет набор из 2 в степени N вероятностей — в сущности, совершая экспоненциально больше работы. Это свойство называется квантовым параллелизмом, и теоретически квантовый процессор может работать экспоненциально быстрее классического. 

Просто: Не особо.

Сложнее: На самом деле, почти никогда не получается. Во-первых, квантовые вычисления не дают абсолютно точного решения задачи — ответ оказывается правильным только с некоторой вероятностью, и коррекция возможной ошибки отнимает дополнительные вычислительные ресурсы. Во-вторых, когда имеешь дело не с понятными нулями и единицами, а с их громоздкими суперпозициями, приходится исхитряться, даже чтобы реализовать простейшие логические операции. Построение квантовых алгоритмов — теоретическая область, развивающаяся параллельно с попытками инженеров создать для них квантовые компьютеры. Успехов в этом направлении достигнуто больше, в частности, известно, что любой классический алгоритм можно перепрограммировать в квантовый, но число квантовых алгоритмов, которые будут заведомо работать намного быстрее классических (то есть возникнет «квантовое ускорение»), относительно невелико. Самые известные из них — алгоритм Гровера для решения задачи перебора и алгоритм Шора, позволяющий раскладывать число на сомножители. 

Просто: Да, но такие простые, что их квантовость не дает никаких преимуществ. 

Сложнее: Квантовых компьютеров, которые способны решать любую задачу, пока не существует. Большинство исследований сейчас направлено не столько на построение действующих квантовых компьютеров, сколько на отработку базовых технологий, в первую очередь — создания кубитов. Время от времени на регистрах из нескольких кубитов запускаются какие-нибудь квантовые алгоритмы и решаются простенькие задачи, вроде разложения числа 143 на простые множители или осуществления перебора из четырех вариантов. Поскольку базовых проблем остается еще очень много, создавать системы больше, чем из пары десятков кубитов, не имеет особого смысла, а у устройств с меньшим количеством кубитов нет заметных преимуществ перед классическими компьютерами. Особняком здесь стоят устройства канадской компании D-Wave, последнее из которых — с 1152 кубитами внутри — наделало недавно столько шума.

Просто: Квантовые системы очень чувствительны: чуть что, они лишаются своего квантового волшебства, а заодно и всех полезных свойств.

Сложнее: Любое «наблюдение» или «измерение», а в сущности, почти любой контакт с внешней средой приводит к тому, что квантовая система становится классической, это явление называется декогеренцией. Представьте подброшенную монетку, которая от столкновения с любой молекулой воздуха или даже от случайно упавшего на нее взгляда немедленно выпадает орлом или решкой. А уж если в системе несколько запутанных кубит, удержать их от декогеренции еще сложнее — это иногда сравнивают с попыткой поставить множество карандашей вертикально на кончики остро отточенных грифелей. Качественная изоляция квантовой системы от внешней среды — не только инженерно сложная, но и дорогостоящая задача. Даже первые прототипы квантовых вычислителей с несколькими кубитами по размерам напоминают компьютеры середины прошлого века и стоят миллионы долларов. Сейчас разрабатывается несколько конкурирующих технологий реализации кубитов, и самая главная задача — как можно дольше удержать их от декогеренции. 

Просто: Да, они продвинулись дальше других, но в основном в области маркетинга — хорошо продают свои продукты. 

Сложнее: Не особо. Канадская компания D-Wave имеет удивительную историю. В 1999 году физик-инженер и чемпион мира по борьбе джиу-джитсу Джорди Роуз прочитал популярную книгу про квантовые вычисления и увлекся этой идеей. О практической реализации квантовых компьютеров тогда еще мало кто помышлял, но Роуз умудрился привлечь финансирование на создание прототипа квантового вычислителя — не имея ни ноу-хау, ни технологий. Почти все разработки D-Wave вела чужими руками, зато каждый созданный прототип упаковывался в черную коробку (точнее — шкаф) с красивым логотипом, который потом громко представляли на рынке как действующий квантовый компьютер. Научное сообщество морщилось, однако коммерческие гиганты, в том числе Lockheed Martin и Google, устройства D-Wave покупали, не жалея десятков миллионов долларов — на всякий случай. Споры о том, что именно находится в черных ящиках с логотипом D-Wave — и можно ли это назвать квантовым компьютером, не утихают до сих пор.

Просто: Легче сказать, чем они похожи — в них есть кубиты и их почему-то называют квантовыми компьютерами. В остальном почти ничего общего.

Сложнее: Хотя в этих устройствах тоже есть кубиты, они выстроены в специфическую прихотливую архитектуру. В сущности, D-Wave умеет решать одну-единственную оптимизационную задачу, которая соответствует естественной эволюции лежащей в ее основе квантовой системы. Машину нельзя непосредственно заставить сложить два числа, выполнить простейшую логическую операцию, на ней нельзя запустить квантовый алгоритм Шора. Все, что она умеет делать — симулировать саму себя, как если бы для решения задачки из школьного учебника про движение двух поездов навстречу друг другу использовалась система, состоящая их двух настоящих поездов и секундомера. Любопытно, что долго никто не мог даже доказать, что работа D-Wave действительно использует явления квантового мира. Убедиться в этом воочию невозможно (как уже говорилось, квантовые эффекты нельзя наблюдать — они сразу становятся классическими), так что единственный способ — удостовериться, что устройство способно сделать то, на что не способны классические системы, например, работать намного быстрее них. И именно это наконец удалось сделать исследователям из Google.

Просто: Правда. Как и то, что улитка доползет до соседней комнаты быстрее вас, если вы решите попутно обогнуть экватор.

Сложнее: Это правда, но только если сравнивать работу D-Wave с работой классического алгоритма, имитирующего то, что происходит внутри D-Wave по обычным физическим законам. Возвращаясь к примеру с задачкой про поезда, такой алгоритм бы буквально моделировал движение двух поездов, всякий раз проверяя, не встретились ли они. Разумеется, есть способ решить ту же задачу проще и быстрее — подставив нужные значения переменных в несложную формулу. Так же и с D-Wave: машина решила задачу поиска минимума с помощью так называемого квантового отжига, команда Google сравнила результат с работой алгоритма имитации квантового отжига, и да — получилось в сто миллионов раз быстрее. Но для того же вычисления есть другой классический алгоритм Селби, который выполняет его быстрее, чем D-Wave. Об этом, кстати, прямо говорится в статье специалистов Google. Другими словами, D-Wave работает быстрее, когда решает одну узкоспециальную задачу и только если сравнивать ее с работой одного неоптимального классического алгоритма. С практической точки зрения, никакого смысла в этом нет, вожделенного квантового ускорения тоже не наблюдается.

Просто: Нет. Скорее Google убедился, что не надули его.

Сложнее: Отнюдь, все эти подробности явно описаны в статье. Если кто-то кого-то и надул, то это журналисты, поспешившие сообщить о технологической революции. А Google нужно было убедиться, что купленная ими машина хотя бы и впрямь является квантовой — для этого нужно было сравнить скорость ее работы именно с неоптимальной классической имитацией квантового отжига. Теперь никто не сомневается, что в работе D-Wave участвует квантовое явление, а если точнее — так называемый туннельный эффект. Но никто не сомневается, что системе D-Wave не суждено совершить настоящую революцию в квантовых вычислениях — она слишком специфически устроена, ее преимущества очень редко проявляются, с ней не работают уже придуманные квантовые алгоритмы. Скорее всего, по-настоящему большие новости придут не со стороны канадского стартапа, а от одной из сильных академических лабораторий, например, под руководством Джона Мартиниза в университете Санта-Барбары или Криса Монро в университете Мэриленда.

Автор: Сергей Немалевич

meduza.io

Почему так сложно создать квантовый компьютер? С белорусским физиком объясняем технологию будущего - Технологии Onliner

Изобретению квантовых компьютеров частенько предсказывают прорыв, аналогичный прорывам при изобретении колеса, покорении огня или создании хорошо знакомых нам компьютеров. Но пока с этой задачей в полном масштабе никто справиться не сумел. В чем же основная загвоздка и зачем нам квантовые компьютеры? Сегодня Onliner.by объясняет суть компьютеров будущего, а помогает нам в этом заместитель заведующего Центром квантовой оптики и информатики Института физики НАН Беларуси член-корреспондент Дмитрий Могилевцев.

Почему за квантовым компьютером будущее?

Зачем вести разработки по созданию квантовых компьютеров? Чем нас не устраивают нынешние, которые постоянно прогрессируют в своей мощности? Теоретически квантовые компьютеры способны быстро решать задачи, на которые даже у суперкомпьютеров уйдут тысячелетия.

— Но есть нюанс. Пока квантовый компьютер дает выгоду только для определенного круга задач. Сейчас они и строятся под такие задачи. Поиск дающих выгоду квантовых алгоритмов — это сама по себе отдельная дисциплина, — рассказывает Дмитрий Могилевцев. — Бум квантовых компьютеров начался с того, что американец Питер Шор предложил с их помощью решать очень важную с практической точки зрения задачу факторизации. Она имеет огромное значение в криптографии.

Перемножить целые числа — это просто, а вот узнать, на какие простые множители разлагается число — крайне трудная задача для классического компьютера. 15 факторизуется на простые числа 3 и 5. Но что если число очень большое и состоит из тысяч цифр?

В теории на классическом компьютере такую задачу разрешить можно, однако на практике это потребует много времени. Увеличивается число — временны́е затраты возрастают по экспоненте и быстро выходят на времена, сравнимые с возрастом Вселенной. А алгоритм Шора, используя возможности квантовых компьютеров, способен произвести факторизацию за время, не намного превосходящее время умножения целых чисел.

Например, современный суперкомпьютер, позволяющий делать более десяти в пятнадцатой степени операций в секунду, разложил бы число с пятьюстами знаками за 5 млрд лет. Квантовый компьютер со скоростью всего миллион операций в секунду решил бы ту же задачу за 18 секунд.

Так как факторизация лежит в основе всей современной криптографии, изобретение эффективных квантовых компьютеров поставит под угрозу большинство активно используемых ныне методов шифрования данных. Ведь вся информация, которая нынче передается через сеть, подвергается шифрованию — банковские транзакции, секретная переписка в соцсетях и прочее. Квантовый компьютер сможет подобрать код для расшифровки этих данных в мгновение ока. И тогда не останется ничего тайного.

— Правда, надолго ли — это еще вопрос. Уже сейчас ведутся работы над постквантовым шифрованием, устойчивым к подобному взлому. Хотя эффективность таких систем криптографии пока еще много хуже традиционных.

А еще квантовые компьютеры могут быть очень полезными для моделирования динамики сложных квантовых систем. Именно в этом еще в начале 80-х годов прошлого века видел их выгоду знаменитый физик, лауреат Нобелевской премии Ричард Фейнман. Кстати, сама идея квантовых вычислений предложена известным советским математиком Юрием Маниным в 1980 году.

Что же такое квантовый компьютер?

Это компьютер, использующий вместо классических битов (бинарных переменных, единичек и нулей) кубиты — состояния квантовой системы с двумя уровнями. В отличие от битов, кубиты могут находиться в состоянии 0, 1 и в суперпозиции 0 и 1.

— Помните мысленный эксперимент с котом Шредингера? Пока мы не откроем коробку, кот в ней и «жив», и «мертв» одновременно. Состояние кота в коробке и называется суперпозицией.

Суперпозиция позволяет квантовым компьютерам делать параллельные, а не последовательные вычисления, что на порядок ускоряет работу в определенных алгоритмах. И чем больше в нашем процессоре связанных кубитов, тем больше информационное преимущество квантового компьютера над классическим, тем он потенциально мощнее и быстрее.

— В отличие от классических компьютерных битов и транзисторов, кубиты для своего физического воплощения требуют, как правило, отдельных квантовых систем с дискретными энергетическими уровнями и единичных квантов возбуждений.

Кубиты можно реализовать, например, с охлажденными атомами в ловушках, дефектами в нанокристаллах алмаза или сверхпроводящими контурами. Последние на современном этапе считаются самыми перспективными для построения квантовых компьютеров, поскольку сверхпроводящий контур-кубит, по сути, — объект почти макроскопический, размером в микрометры, доступный для манипуляций и массового изготовления.

Сверхпроводящие кубиты можно создавать на основе существующих методов литографии и помещать на чипы, не боясь, что они куда-нибудь сбегут как атомы. Так, в 2015 году Министерство образования и науки РФ сообщало о создании кубитов из четырех джозефсоновских контактов на «петле» размером в один микрон: «Контакты состоят из алюминиевых полосок, разделенных слоем диэлектрика (оксида алюминия) толщиной около 2 нанометров». Для печати кубита использовалась технология электронной и фотолитографии. Процесс этот весьма увлекательный и подробно расписан создателями в их блоге.

Существуют ли настоящие квантовые компьютеры?

— Они уже есть, и вполне настоящие. Их покупают и продают. Канадская компания «Ди-вэйв» (D-Wave) с 2011 года продает процессоры на нескольких сотнях и более кубитов. Одним из покупателей является аэрокосмическая корпорация «Локхид Мартин» (Lockheed Martin), приобретшая один из первых 128-кубитных процессоров за $11 млн. В начале прошлого года «Ди-вэйв» выпустила устройство с 2000 кубитов.

Правда, на стол в каждой отдельной семье квантовый компьютер поставить трудно — это ящик трехметровой высоты стоимостью $15 млн, внутри которого холоднее, чем в открытом космосе, нагретом реликтовым излучением до 2,725 Кельвина или -270,425 градусов по Цельсию. [Компьютер D-Wave работает при температуре -273 градуса по Цельсию, тогда как на орбите Земли средняя температура абсолютно черного тела составит +4 градуса — прим. Onliner.by]. И даже если оставить сомнения в истинной квантовости компьютера «Ди-вэйв», выгода от него — лишь для отдельных специализированных задач.

В некоторых случаях речь идет о задачах по оптимизации функции затрат по принципу квантового отжига. Например, компании Google это позволило в одном из таких алгоритмов добиться в 100 млн раз большего быстродействия по сравнению с обычным компьютером.

А летом прошлого года группа физиков под руководством профессора Гарварда и сооснователя Российского квантового центра Михаила Лукина смогла создать 51-кубитный квантовый компьютер для моделирования квантовых систем, то есть квантовый симулятор. «Наш симулятор обладает достаточно хорошей когерентностью и довольно большим количеством кубитов, но все это есть и у других систем. Что важно — нам удалось сделать систему с высокой степенью программируемости», — говорил Михаил Лукин в интервью РБК. Квантовый симулятор, по мнению американского ученого Кристофера Монро, это то, что можно запрограммировать под выполнение лишь определенного вида задач и со временем превратить в универсальный квантовый компьютер, когда станет возможно программировать симулятор произвольным образом. Михаил Лукин отмечает, что на данном этапе исследований грань между компьютером и симулятором очень размыта.

Компания Intel в октябре прошлого года объявила о выпуске экспериментального 17-кубитного квантового процессора. Разработчики утверждают, что применили новую архитектуру, которая позволила повысить надежность, улучшить температурные характеристики и изоляцию от помех из-за совместной работы кубитов.

Работы ведутся. Как в середине прошлого века ученые предполагали, что на весь мир хватит и пяти компьютеров, так в нынешнем столетии хочется надеяться, что и задач для квантовых компьютеров станет больше, и для их производства найдутся эффективные и масштабируемые технологии. Пока же есть загвоздки.

Что останавливает торжество квантовых компьютеров?

— Конечно, было бы здорово, если бы удалось сделать компактный и дешевый универсальный квантовый процессор, для всякой задачи работающий не хуже классического и пригодный для помещения в смартфон. Но, увы, пока технологические затруднения слишком велики. Квантовость хрупка. Окружающий мир постоянно толкает наше квантовое состояние, и оно размывается.

Представьте, что вы пытаетесь удержать неподвижным маленький шарик в широкой миске, в то время как вас и миску в ваших руках постоянно и быстро толкают в разные стороны. Шарик остается в миске, расстояние от него до ваших глаз более-менее постоянно, но его положение все время меняется, он дрожит и в ваших глазах превращается в расплывчатое пятно.

На научном языке это называется «декогеренцией». Для большого числа кубитов подобный фазовый шум — настоящее бедствие, способное быстро убить все то, что дает преимущество квантовому компьютеру. Он загоняет квантовое состояние в классическое, губит суперпозицию. Нужно изолироваться, не дать окружающему миру толкать наши кубиты. Один из выходов — попросту заморозить окружающее до суперкосмического холода, как в «Ди-вэйв». Оттого и трехметровые габариты, и высокая цена — хотя сам процессор величиной с ноготь.

Но сейчас интенсивно разрабатываются и другие платформы для квантового процессора, например дефекты в нанокристаллах алмаза, которые способны сохранять когерентность при комнатной температуре.

В последние годы в гонку ввязались мировые технологические гиганты, а потому можно ожидать, что в ближайшие десятилетия мы увидим полноценный квантовый компьютер. Если не на своем столе в гостиной, то в университетской лаборатории уж точно.

Компьютеры в каталоге Onliner.by

Читайте также:

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Перепечатка текста и фотографий Onliner.by запрещена без разрешения редакции. [email protected]

tech.onliner.by

Квантовые компьютеры: принципы работы

Специалисты предсказывают, что вскоре на смену обычным компьютерам придут квантовые, по мощности превосходящие современные вычислительные системы в несколько раз. Но что же из себя представляют квантовые компьютеры? По прогнозам экспертов уже совсем скоро, лет через 10, микросхемы в компьютерах достигнут атомных измерений. Представляется логичным, что грядет эпоха квантовых компьютеров, с помощью которых скорость вычислительных систем может повыситься на несколько порядков. Идея квантовых компьютеров сравнительно нова: в 1981 году Пол Бениофф впервые теоретически описал принципы работы квантовой машины Тьюринга.

(справка: В 1930-х Алан Тьюринг впервые описал теоретическое устройство, представляющее собой бесконечную ленту, разделенную на маленькие ячейки. Каждая ячейка может содержать в себе символ 1 или 0, или же остается пустой. Управляющее устройство перемещается по ленте, считывая символы и записывая новые. Из набора таких символов составляется программа, которую машина должна выполнить. В квантовой машине Тьюринга, предложенной Бениоффом, принципы работы остаются теми же, с той разницей, что как лента, так и управляющее устройство находятся в квантовом состоянии.

Это значит, что символы на ленте могут быть не только 0 и 1, но и суперпозициями обоих чисел, т. е. 0 и 1 одновременно. Таким образом, если классическая машина Тьюринга способна одновременно исполнять лишь одно вычисление, то квантовая занимается несколькими вычислениями параллельно.)

Сегодняшние компьютеры работают по тому же принципу, что и нормальные машины Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний. Физическими системами, реализующими кубиты, могут быть атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Фактически, если сделать элементарные частицы носителями информации, с помощью них можно построить компьютерную память и процессоры нового поколения. Благодаря суперпозиции кубитов квантовые компьютеры изначально рассчитаны на выполнение параллельных вычислений. Этот параллелизм, по мнению физика Дэвида Дойча, позволяет квантовым компьютерам выполнять одновременно миллионы вычислений, в то время, как современные процессоры работают лишь с одним единственным. 30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (триллион операций в секунду). Мощность современных настольных компьютеров измеряется всего лишь гигалопсах (миллиард операций в секунду). Другое важное квантовомеханическое явление, которое может быть задействовано в квантовых компьютерах, называется «запутанностью». Основная проблема считывания информации из квантовых частиц заключается в том, что в процессе измерения они могут изменить свое состояние, причем совершенно непредсказуемым образом. Фактически, если считать информацию с кубита, находящегося в состоянии суперпозиции, получим лишь 0 или 1, но никогда не оба числа одновременно. А это значит, что вместо квантового, мы будем иметь дело с нормальным классическим компьютером. Чтобы решить эту проблему, люди должны использовать такие измерения, которые не разрушают квантовую систему. Квантовая запутанность предоставляет потенциальное решение. В квантовой физике, если приложить внешнюю силу к двум атомам, их можно «запутать» вместе таким образом, что один из атомов будет обладать свойствами другого. Это, в свою очередь, приведет к тому, что, например, измеряя спин одного атома, его «запутанный» близнец сразу примет противоположный спин. Такое свойство квантовых частиц позволяет физикам узнать значение кубита, не измеряя его непосредственно. В один прекрасный день квантовые компьютеры могут заменить кремниевые чипы, подобно тому, как транзисторы пришли на смену вакуумным трубкам. Однако современные технологии пока еще не позволяют строить полноценные квантовые компьютеры. Тем не менее, с каждым годом исследователи объявляют о новых достижениях в области квантовых технологий, и надежда, что когда-нибудь квантовые компьютеры смогут превзойти обычные, продолжает крепнуть... аминь.

*Хронология: 1998 год: Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации. 2000 год: В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости. 2001 год: Демонстрация вычисления алгоритма Шора специалистами из IBM и Стэнфордского университета на 7-кубитном квантовом компьютере. 2005 год: В институте квантовой оптики и квантовой информации при Иннсбрукском университете впервые удалось создать кубайт (сочетание 8 кубитов) с помощью ионных ловушек. 2007 год: Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку. С 011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

По материалам Научно-популярного журнала

Naked Scince**

Текст Длиннотекст Наука Компьютер Квантовые технологии Не мое Длиннопост

pikabu.ru

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть  мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться  этой темой при просмотре  фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт  конфидециальной информации (компромата)  о деятельности спецслужб США,  хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше  лет. Квантовый же  компьютер  по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро  ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей.  Так вот, все пародоксы Энштейна, описывающие законы нашего мира   —  просто  невинный лепет пятилетнего ребенка по сравнению с тем,  что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально.  Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество —  это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет».  Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе  «Нет», то это «Ноль». Вариант  значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте  ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду  появляется и исчезает  такой  вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора  и  вычислений Ваш компьютер обрабатывает  Ваши запросы в Яндексе, ищет нужные  до тех пор, пока не решит задачу и  путем исключения  не  докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка  — это тоже нули и единицы.

Представьте теперь  себе друзья на секунду модель нашей солнечной системы.  В центре Солнце, вокруг него  летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду  она уже  улетит на тридцать километров  дальше.

Так вот, модель атома то же планетарная, там атом  тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно.   И назвали  они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими  явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно  оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных  состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может  ОДНОВРЕМЕННО принимать все  возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы  для  математических вычислений были придуманы еще  математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от  квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом  на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как  некая «петля»,  в которой происходит нечто  для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер  51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается  большой прорыв в науке, когда  эти системы заработают. Вот фото человека, который  представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу  компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень  интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только  современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно  появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют  много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только  бы не подвел  человеков  свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат.  Пишите, если статья была интересной. Заходите чаще. До свидания!

fast-wolker.ru


Смотрите также

Календарь

ПНВТСРЧТПТСБВС
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Мы в Соцсетях

 

vklog square facebook 512 twitter icon Livejournal icon
square linkedin 512 20150213095025Одноклассники Blogger.svg rfgoogle