Коэффициент вариации что это такое


Коэффициент вариации

Из всех показателей вариации среднеквадратическое отклонение в наибольшей степени используется для проведения других видов статистического анализа. Однако среднеквадратическое отклонение дает абсолютную оценку меры разбросанности значений и чтобы понять, насколько она велика относительно самих значений, требуется относительный показатель. Такой показатель называется он коэффициент вариации.

Формула коэффициента вариации:

Данный показатель измеряется в процентах (если умножить на 100%).

В статистике принято, что, если коэффициент вариации

меньше 10%, то степень рассеивания данных считается незначительной,

от 10% до 20% - средней,

больше 20% и меньше или равно 33% - значительной,

значение коэффициента вариации не превышает 33%, то совокупность считается однородной,

если больше 33%, то – неоднородной.

Средние, рассчитанные для однородной совокупности – значимы, т.е. действительно характеризуют эту совокупность, для неоднородной совокупности – незначимы, не характеризуют совокупность из-за значительного разброса значений признака в совокупности.

Возьмем пример с расчетом среднего линейного отклонения.

И график для напоминания

По этим данным рассчитаем: среднее значение, размах вариации, среднее линейное отклонение, дисперсию и стандартное отклонение.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Дисперсия считается по формуле:

Среднеквадратическое отклонение – квадратный корень из дисперсии:

Расчет сведем в табличку.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

  1. Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.

  2. Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.

  3. Дисперсия – средний квадрат отклонений.

  4. Среднеквадратическое отклонение – корень из дисперсии (среднего квадрата отклонений).

  5. Коэффициент вариации – наиболее универсальных показатель, отражающий степень разбросанности значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных. Исключением является коэффициент вариации, который характеризует однородность данных, что является ценной статистической характеристикой.

7

studfiles.net

Коэффициент вариации по 44-ФЗ. Пример расчёта, формула

Одной из ключевых стадий подготовки закупочной документации становится расчет начальной максимальной цены контракта (НМЦК). Законодательно предусмотрено несколько способов, с помощью которых можно производить расчеты. Чаще всего используется метод сопоставимых рыночных цен. При этом итоговая НМЦК должна определяться с учетом коэффициента вариации. Поэтому всем заказчикам необходимо понять, что включает в себя этот показатель и как его правильно определить.

Что такое коэффициент вариации

Размер НМЦК определяется еще на этапе планирования. Эта сумма должна быть отражена в плане и план-графике. Непосредственно перед подготовкой извещения она корректируется с учетом сложившейся на тот момент экономической обстановки. Вопросы, связанные с НМЦК рассматриваются в статье 22 44-ФЗ. Методики ее расчета описаны в Приказе Министерства экономики и развития № 567 от 02 октября 2013 года. В этом же документе приводятся правила определения коэффициента вариации.

Разработано несколько методик выявления НМЦК: нормативная, тарифная, проектно-сметная, затратная. Самым приоритетным считается метод сопоставимых рыночных цен. Именно его рекомендуется использовать при определении стартовой цены. Он предполагает сравнение коммерческих предложений, предоставляемых потенциальными поставщиками по запросу заказчика. Для проведения такого анализа и применяется коэффициент вариации. Он выражается в процентах.

Под коэффициентом вариации понимается мера относительного разброса предлагаемых цен. Он показывает, какую долю занимает средний разброс цен от среднего значения цены. Этот показатель может принимать следующие значения:

  1. Меньше 10%. В таком случае разница в ценах признается незначительной.
  2. От 10% до 20%. Разброс считается средним.
  3. От 20% до 33%. Разница признается значительной, но допустимой.
  4. Свыше 33%. Данные неоднородны. При расчете НМЦК не допускается использовать данные с коэффициентом вариации свыше 33%.

Для определения коэффициента разработана специальная формула. По ней легко подсчитать параметр, подставив соответствующие данные. Упростить себе задачу можно, используя калькуляторы, которые сегодня широко представлены в интернете. 

Что делать, если коэффициент завышен

Если при расчете коэффициента вариации получилось значение меньше 33%, то выборка признается однородной. Следовательно, полученное значение можно использовать для определения НМЦК. 

Если возникла такая ситуация, что значение коэффициента оказывается выше 33 процентов, тогда потребуется внесение корректировок в используемые данные. Для этого проводится дополнительное исследование рынка. Необходимо собрать коммерческие предложения от большего количества поставщиков и повторить расчет на основе новых данных. Если собрать дополнительные предложения не получается, можно воспользоваться сведениями из ранее заключенных договоров, которые хранятся в реестре контрактов. 

В крайней ситуации, когда никак не получается добиться нужного коэффициента вариации можно исключить из выборки неподходящие предложения. Вы также можете попросить поставщика указать в своем предложении нужную вам сумму. 

Правила расчета

Методика расчета коэффициента вариации прописана в приказе Минэкономразвития № 567. Согласно действующим нормам заказчик должен направить не менее пяти запросов коммерческих предложений потенциальным поставщикам. Для расчета используются не менее трех предложений, полностью соответствующих требованиям заказчика. 

Стоит отметить, что приказ № 567 не является нормативным актом, следовательно, его исполнение не обязательно. За его нарушение никаких штрафных санкций не предусматривается. Однако во избежание спорных ситуаций заказчика рекомендуется пользоваться именно этими правилами расчета.

Для определения коэффициента вариации применяется следующая формула:

Среднеквадратичное отклонение позволяет определить разброс данных. Для его определения выбирают среднюю цену и меру разброса. Вычислить среднеквадратичное отклонение удается по следующей формуле:

В ситуациях, когда закупка включает в себя одновременно несколько позиций, расчет ведется по каждой из них. Это позволяет выявить товары с наибольшим разбросом цен. 

Пример расчета

Предположим, что государственное учреждение проводит закупку принтеров для собственных нужд. Потенциальным поставщикам были отправлены соответствующие запросы. Было получено четыре коммерческих предложения цен: 2500 рублей, 2800 рублей, 2450 рублей и 2600 рублей.

В первую очередь необходимо рассчитать среднеарифметическое значение цены

Следующим шагом становится расчет среднеквадратичного отклонения

Осталось только рассчитать коэффициент вариации

Полученное значение коэффициента меньше 33%, следовательно, все собранные данные подходят для расчета стартовой цены контракта. Расчет НМЦК и коэффициента вариации оформляются в форме отчета, который становится обязательной частью закупочной документации. 

Коэффициент вариации – важный инструмент, позволяющий оценить правильность ценовых предложений, полученных от поставщиков. Поэтому при составлении документации заказчикам необходимо учитывать правила расчета этого показателя и особенности его применения.

goszakupkirf.ru

Коэффициент вариации

Коэффициент вариации – это один из наиболее применимых в финансовой сфере статистических коэффициентов. Расскажем, как рассчитать коэффициент вариации и чем он может пригодиться финансовому директору.

Используйте пошаговые руководства:

Коэффициент вариации (Coefficient of variation, или CV) – это мера относительного разброса случайной величины. Он показывает, какую долю составляет средний разброс случайной величины от среднего значения этой величины.

В общем случае коэффициент вариации используют для определения дисперсии значений без привязки к масштабу измеряемой величины и единицам измерения. Коэффициент вариации входит в группу относительных методов статистики, измеряется в процентах и поэтому его можно использовать для сравнения вариации нескольких не связанных между собой процессов и явлений.

Использование коэффициента вариации в финансовом моделировании

Коэффициент вариации является лидером среди вариационных статистических методов, которые используют финансовые и инвестиционные аналитики.

Для финансовой модели коэффициент вариации показывает унифицированный риск (unitized risk), то есть относительный разброс возможного дохода по модели к его среднему прогнозному значению (см. также, как построить финансовую модель предприятия).

Аналитики используют коэффициент:

  1. Для определения устойчивости прогнозной модели.
  2. Для сравнения нескольких прогнозных моделей (в основном инвестиционных) с разными абсолютными уровнями дохода и риска.
  3. Для проведения XYZ анализа.

Читайте также: xyz-анализ - пример в excel

Формула расчета коэффициента вариации

Коэффициент вариации рассчитывается по формуле:

где CV – коэфф вариации,

σ – среднеквадратическое отклонение случайной величины,

tср – среднее значение случайной величины.

Формула коэффициента вариации для инвестиционных финансовых моделей:

где NPV – чистый приведенный доход.

Формула коэффициента вариации для инвестиций в ценные бумаги:

где:%год – доходность по ценной бумаге в % годовых.

Коэффициент вариации в Excel

В Эксель можно посчитать коэффициент вариации с использованием формулы:

=СТАНДОТКЛОНПА(диапазон значений)/СРЗНАЧ (диапазон значений)

Или с использованием встроенного пакета «Анализ данных».

Анализ коэффициента вариации

Коэффициент вариации более универсален, в отличие от дисперсии и среднеквадратического отклонения, потому что позволяет сопоставлять риск и доходность двух и более активов, которые могут существенно отличаться. Правда, у метода оценки пары доходность/риск с помощью коэффициента вариации есть ограничения. Если ожидаемая доходность стремится к нулю, то значение коэффициента вариации стремится к бесконечности. И даже незначительное изменение ожидаемой доходности проекта (или ценной бумаги) приводит к значительному изменению коэффициента, что необходимо учитывать при обосновании инвестиционных решений.

Принято считать, что, если коэффициент вариации модели:

  • меньше 10%, то степень риска проекта является незначительной,
  • от 10% до 20% – средней,
  • больше 20%  – значительной,
  • если значение коэффициента вариации больше 33%, то финансовая модель считается неоднородной, неустойчивой. По ней нельзя принимать объективных инвестиционных решений

Примеры расчета коэффициента вариации в Excel

Пример 1

Предприятие X, работающее в сфере производства ювелирных изделий, рассматривает два инвестиционных проекта (см. также пример реального инвестиционного проекта с расчетами).

Первый – открытие сети розничных точек для торговли ювелирными изделиями в Москве и Санкт-Петербурге.

Второй – открытие сети розничных точек по всей России в городах-миллионниках.

Финансовый аналитик предприятия составил финансовые модели обоих проектов в Excel и по модели Монте-Карло сделал по 5000 прогонов для NPV в каждом проекте (см. также, как создать наглядную финансовую модель в Excel). Далее с помощью пакета анализа «Анализ данных» получил следующие статистические показатели (см. таблицы 1 и 2).

Таблица 1. Показатели по проекту 1

Среднее

14,05

Дисперсия выборки

1,72

Таблица 2. Показатели по проекту 1

Среднее

25,23

Дисперсия выборки

6,30

Средний предполагаемый NPV от Проекта 1 составит 14,05 тысяч долларов, дисперсия (она же среднее квадратическое отклонение) будет равна 1,72 тысяч долларов.

Коэффициент вариации для первого проекта равен:

CV = 1.72/14.05 = 12%

Проект признается среднерисковым.

Средний предполагаемый NPV от Проекта 2 составит 25,23 тысяч долларов, дисперсия будет равна 6,30 тысяч долларов.

Коэффициент вариации для второго проекта составит:

CV = 6,30/25,23 = 24,97%

Проект признается высокорисковым.

Если сравнивать проекты 1 и 2 по коэффициенту вариации, то следует выбрать Проект 1, так как соотношение доход/риск у него лучше.

Пример 2

Компания «Сигма» проводит XYZ анализ товарного ассортимента по показателю изменчивости продаж. Продуктовая линейка компании представлена пятью товарами: А, В, С, D и E.

Имеется помесячная статистика продаж за последний год по каждому товару (см. рисунок). На практике лучше иметь статистику за период более трех лет/

Рисунок. Статистика продаж за последний год по каждому товару

Финансовый аналитик компании рассчитал коэффициент вариации для каждого товара

CVа = СТАНДОТКЛОНПА(B2:В13)/СРЗНАЧ (В2:В13) = 30%

CVb = 6%

CVc = 12%

CVd = 4%

CVe = 38%

В компании установлены следующие интервалы для групп XYZ:

X – 0–10%,

Y – 11–30%,

Z – 31–100%.

Значит, товары B и D относятся к категории X. Спрос на них постоянный, запасы на складах по ним должны быть под пристальным контролем и постоянно пополняться.

Товары A и C относятся к категории Y. Спрос на них отклоняется в пределах 30% от месяца к месяцу. Возможно, имеет место сезонность спроса. Нужно глубже анализировать статистику продаж и выработать оптимальную политику по остаткам на складах для данной группы.

Товар E имеет наиболее волатильный спрос, продажи по нему осуществляются нерегулярно, поэтому возможно имеет смысл перейти на работу с ним по предзаказу.

Выводы

Следует помнить, что коэффициент вариации – это не единственный способ оценки эффективности инвестирования, так как он не учитывает несколько важных факторов:

  1. Объемы первоначального инвестирования.
  2. Возможную асимметричность распределения. При расчете коэффициента вариации предполагается, что разброс значений случайной величины расположен симметрично к среднему (часто по нормальному распределению). Но это не всегда соответствует действительности. Например, для опционов, доходность которых не может быть ниже нуля, имеет место асимметрия распределения, и анализировать коэффициент вариации по ним нужно с оглядкой на другие методы статистического анализа.
  3. Инвестиционную политику субъекта инвестирования.
  4. Другие нечисловые факторы.

Однако метод оценки статистических, в том числе финансовых, данных посредством расчета коэффициента вариации заслуженно признан одним из наиболее эффективных сравнительных методов статистики.

www.fd.ru

Коэффициент вариации - это... Что такое Коэффициент вариации?

  • Коэффициент вариации — мера отклонения опытных данных от выборочного среднего значения, выражаемая в долях единицы или процентах, вычисляется по формуле (5). Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов испытаний …   Словарь-справочник терминов нормативно-технической документации

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — (coefficient of variation) Показатель изменчивости относительно средней величины. Величина измеряется в среднем, а изменчивость измеряется стандартным отклонением, которое равно квадратному корню из среднеквадратичного отклонения от среднего… …   Экономический словарь

  • коэффициент вариации — коэффициент изменчивости — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы коэффициент изменчивости EN coefficient of variation …   Справочник технического переводчика

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — см. Коэффициент изменчивости выборки. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — англ. coefficient, variation; нем. Variationskoeffizient. Отнощение стандартного отклонения переменной к ее среднему арифметическому. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • Коэффициент вариации — – относительный показатель однородности прочности и плотности строительного раствора, выраженный в процентах от среднего значения прочности. [ГОСТ 4.233 86] Рубрика термина: Раствор Рубрики энциклопедии: Абразивное оборудование, Абразивы,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • коэффициент вариации — variacijos koeficientas statusas T sritis Kūno kultūra ir sportas apibrėžtis Vidutinio kvadratinio nuokrypio ir vidurkio santykis; santykinė atsitiktinio dydžio reikšmių nuokrypių nuo jo vidurkio charakteristika. atitikmenys: angl. quotient of… …   Sporto terminų žodynas

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — показатель вариации количественной переменной , измеряющий стандартное отклонение в процентах от среднего арифметического : V = s / x * 100%. Применяется в сравнительном анализе и метанализе для сопоставления результатов, полученных для разных… …   Социология: Энциклопедия

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — См. распределения, коэффициент …   Толковый словарь по психологии

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — англ. coefficient, variation; нем. Variationskoeffizient. Отнощение стандартного отклонения переменной к ее среднему арифметическому …   Толковый словарь по социологии

dic.academic.ru

Коэффициент вариации в статистике: примеры расчета

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

Оглавление:

  • Показатели описательной статистики
  • Среднее арифметическое
  • Стандартное отклонение
  • Коэффициент вариации
  • Расчёты в Microsoft Ecxel 2016

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Среднее арифметическое

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться. Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического. Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Стандартное отклонение

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Коэффициент вариации

Среднее квадратичное отклонение хорошо работает с рядами, в которых разброс значений не очень велик (это хорошо прослеживалось на примере роста, где интервал был всего 18 см). Если бы ряд наших измерений был значительнее, а варьирование роста было сильнее, то стандартное отклонение стало непоказательным и нам потребовался бы критерий, который может отразить разброс в относительных единицах (т. е. в процентах, относительно средней величины).

Для этих целей предусмотрены абсолютные и относительные показатели вариации в статистике, характеризующие вариационные масштабы:

  • Квадратический коэффициент вариации.
  • Размах вариации.
  • Коэффициент осцилляции.

Квадратический коэффициент вариации (обозначается как Vσ) – это отношение среднеквадратичного отклонения к среднеарифметическому значению, выраженное в процентах.

Для нашего примера со студентами, определить Vσ несложно — он будет равен 3,18%. Основная закономерность – чем больше будет изменяться значение коэффициента, тем больше разброс вокруг среднего значения и тем менее однородна выборка.

Преимущество коэффициента вариации в том, что он показывает однородность значений (асимметрия) в ряду наших измерений, кроме того, на него не оказывают влияния масштаб и единицы измерения. Эти факторы делают коэффициент вариации особенно популярным в биомедицинских исследованиях. Будет считаться, что эксцесс значения Vσ =33% отделяет однородные выборки от неоднородных.

Если найти в ряду значений роста (первый пример) максимальное и минимальное значения, то получим размах вариации (обозначается как R, иногда ещё называется колеблемостью). В нашем примере – это значение будет равно 18 см. Эта характеристика используется для расчёта коэффициента осцилляции:

Коэффициент осцилляции – показывает как размах вариации будет относиться к среднему арифметическому ряда в процентном отношении.

Расчёты в Microsoft Ecxel 2016

Можно рассчитать описанные в статье статистические показатели в программе Microsoft Excel 2016, через специальные функции в программе. Необходимая информация приведена в таблице:

Наименование показателя Расчёт в Excel 2016*
Среднее арифметическое =СРГАРМ(A1:A10)
Дисперсия =ДИСП.В(A1:A10)
Среднеквадратический показатель =СТАНДОТКЛОН.В(A1:A10)
Коэффициент вариации =СТАНДОТКЛОН.Г(A1:A10)/СРЗНАЧ(A1:A10)
Коэффициент осцилляции =(МАКС(A1:A10)-МИН(A1:A10))/СРЗНАЧ(A1:A10)

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию:

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

1001student.ru

КОЭФФИЦИЕНТ ВАРИАЦИИ - это... Что такое КОЭФФИЦИЕНТ ВАРИАЦИИ?

  • Коэффициент вариации — мера отклонения опытных данных от выборочного среднего значения, выражаемая в долях единицы или процентах, вычисляется по формуле (5). Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов испытаний …   Словарь-справочник терминов нормативно-технической документации

  • коэффициент вариации — коэффициент изменчивости — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы коэффициент изменчивости EN coefficient of variation …   Справочник технического переводчика

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — см. Коэффициент изменчивости выборки. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • Коэффициент вариации — случайной величины мера относительного разброса случайной величины; показывает, какую долю среднего значения этой величины составляет ее средний разброс. Равен отношению стандартного отклонения к математическому ожиданию. Так же используется… …   Википедия

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — англ. coefficient, variation; нем. Variationskoeffizient. Отнощение стандартного отклонения переменной к ее среднему арифметическому. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • Коэффициент вариации — – относительный показатель однородности прочности и плотности строительного раствора, выраженный в процентах от среднего значения прочности. [ГОСТ 4.233 86] Рубрика термина: Раствор Рубрики энциклопедии: Абразивное оборудование, Абразивы,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • коэффициент вариации — variacijos koeficientas statusas T sritis Kūno kultūra ir sportas apibrėžtis Vidutinio kvadratinio nuokrypio ir vidurkio santykis; santykinė atsitiktinio dydžio reikšmių nuokrypių nuo jo vidurkio charakteristika. atitikmenys: angl. quotient of… …   Sporto terminų žodynas

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — показатель вариации количественной переменной , измеряющий стандартное отклонение в процентах от среднего арифметического : V = s / x * 100%. Применяется в сравнительном анализе и метанализе для сопоставления результатов, полученных для разных… …   Социология: Энциклопедия

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — См. распределения, коэффициент …   Толковый словарь по психологии

  • КОЭФФИЦИЕНТ ВАРИАЦИИ — англ. coefficient, variation; нем. Variationskoeffizient. Отнощение стандартного отклонения переменной к ее среднему арифметическому …   Толковый словарь по социологии

dic.academic.ru


Смотрите также

Календарь

ПНВТСРЧТПТСБВС
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Мы в Соцсетях

 

vklog square facebook 512 twitter icon Livejournal icon
square linkedin 512 20150213095025Одноклассники Blogger.svg rfgoogle