Геофизика что это такое


Геофизик

От греч. ge — Земля и physike — основы естествознания. Профессия подходит тем, кого интересует физика и география (см. выбор профессии по интересу к школьным предметам).

Главные задачи современной геофизики:  изучение и оценка природных ресурсов, охрана окружающей среды, прогноз погоды и стихийных бедствий, исследование Мирового океана, космические исследования, контроль за ядерными испытаниями. Этим и занимается геофизик.

Особенности профессии

Геофизика — совокупность дисциплин, исследующих происхождение, эволюцию, строение, свойства и процессы (природные и техногенные) в Земле и её оболочках (атмосфере, гидросфере, литосфере и т.д.).

Геофизика связана с геологическими науками (особенно тектоникой, вулканологией, петрофизикой, а также геохимией), астрономией, математикой, физикой и многими техническими науками, физической географией и др.

Освоение планеты невозможно без элементарных геофизических наблюдений — измерения расстояний, определения направлений на морях и океанах, описания и систематизации стихийных бедствий и т.д. В XVII-XIX вв.  были открыты основные законы макроскопической физики. Тогда же  появилось понимание необходимости глобальных наблюдений с помощью геофизических обсерваторий для глобальных наблюдений.

В 60-х гг. ХХ в., с появлением ЭВМ, геофизики смогли автоматизировать обработку результатов наблюдений.  А использование методов физики твёрдого тела и физики высоких давлений позволило перейти от проблемы внутреннего строения Земли к физике земных недр.

Возможности геофизики возросли и благодаря космическим исследованиям. Возникла новая наука — сравнительное планетоведение, в которой геофизические методы играют определяющую роль. Проблемы, стоящие перед человечеством – поиск новых природных ресурсов, защита людей и природы в целом  от стихийных бедствий и техногенных катастроф – делают геофизику одним из важнейших разделов современного естествознания.

Крупные разделы геофизики: солнечно-земная физика, физика атмосферы, гидрофизика и физика «твёрдой» Земли, разведочная геофизика, промысловая геофизика и вычислительная геофизика.

Солнечно-земная физика изучает явления и процессы в межпланетной и околоземной среде.

Физика атмосферы, изучающая атмосферные явления, под разделяется на метеорологию (изучает нижние слои атмосферы), и аэрономию (изучает верхние слои).

Тепловое излучение и различные оптические эффекты атмосферы изучаются актинометрией и атмосферной оптикой. Учения об атмосферном электричестве, акустике и турбулентности выделяются в отдельные отрасли науки.

Разведочная геофизика – раздел геофизики, занятый изучением глубинного строения земной коры, поисками и исследованием  месторождений полезных ископаемых. Для этого она применяет гравиметрические, магнитные, электрические, сейсмические и ядерно-физические методы. Специалисты в разведочной геофизике занимаются поиском полезных ископаемых (нефти, газа, руды и пр.) и подземных вод.

Анализируя с помощью компьютера результаты измерений (сейсмических волн, гравитационных полей и пр.), геофизики выявляют месторождение полезных ископаемых; создают карты рельефа дна океана, структуры земной коры, соляных куполов и антиклинали, где аккумулируется нефть; определяют состав и генезис горных пород, толщину ледниковых покровов.

Рабочее место

Геофизики (в зависимости от специализации) работают в научно-исследовательских и проектных организациях, в геологоразведочных и нефтедобывающих компаниях.

Важные качества

Интерес к физике и географии, математические способности, аналитический склад ума. Измерения обычно приходится проводить в полевых условиях, поэтому требуется крепкое здоровье.

Оплата труда

Знания и навыки

Необходимы познания в области физики и географии, умение проводить измерения с помощью измерительных приборов и обрабатывать полученные результаты с помощью специальных компьютерных программ. Также необходимо уметь анализировать полученные данные в соответствии со своими исследованиями.

Дополнительные особенности:

Специалистов-геофизиков готовят университеты и геологоразведочные вузы. Иногда в эту профессию приходят работать люди с физико-математическим образованием. Выпускники геологоразведочных техникумов, обучавшиеся по этой специальности, могут работать геофизиками-техниками. Под руководством инженера они выполняют отдельные виды измерений и обрабатывают полученные материалы.

Где учат

Среднее специальное образование

  • Московский геологоразведочный техникум
  • Новосибирский геологоразведочный техникум и др.

Квалификация «техник» (работает под руководством геофизика с высшим образованием).

Высшее образование

  • Московский государственный Университет (МГУ) им. Ломоносова

Геологический факультет

Кафедра геофизических методов исследований земной коры

Готовит геологов-геофизиков

Кафедра сейсмометрии и геоакустики

готовит дипломированных специалистов по сейсмометрии и морской геофизике.

  • Московский государственный университет геодезии и картографии (МИИГАиК) Геодезический факультет

Направление «Геодезия и землеустройство»

Готовят инженеров по прикладной геодезии, по астрономогеодезии, по космической геодезии. А также бакалавров и магистров техники и технологий.

Направление «Прикладная информатика (в геодезии)».

Готовят бакалавров и магистров прикладной информатики.

  • Казанский (Приволжский) государственный университет

Институт геологии и нефтегазовых технологий (в структуре университета)

Кафедра геофизики

Специальности: «рудная геофизика», «сейсмометрия и сейсмология», «геофизические методы исследования скважин».

И др. вузы.

www.profguide.io

Геофизика - это что такое? Где учат на геофизика?

Геофизика -это сравнительно молодая наука, которая сформировалась только к середине XIX века. На сегодняшний день важными целями геофизиков является: охрана окружающей среды, исследование природных ресурсов, контроль ядерных опытов, составление прогнозов и научное предсказание стихийных бедствий.

Что такое геофизика?

Геофизика – это целый комплекс наук, которые исследуют строение Земли при помощи физических методов. Геофизика изучает Землю со всех сторон и очень многопланово. Она включает в себя изучение земной коры, ядра, мантии, рек, льдов, океанов и атмосферы Земли. Термин «геология» был введён норвежским учёным М. Эшольтом в 1657 году.

Геофизика будет интересна людям, которые интересуются космосом. Геофизика, космос очень связаны, так как научные методы позволяют предсказывать некоторые изменения в мировом пространстве. Космос представляет собой такую же субстанцию для изучения, как суша или рельеф поверхности земли.

Разведочная геофизика

Разведочная геофизика очень важна для науки и общества. Её методы просты и удобны, поэтому применяются повсеместно. Разведочная геофизика занимается подробным исследованием строения Земли. Главной целью исследований является поиск и нахождение полезных ископаемых. Кроме того, ищутся причины, которые могут послужить возникновению залежей. Изучение может проводиться на суше и на водной части Земли, а также в воздухе и космосе. Разведочная геофизика очень популярна и часто используема из-за того, что процедура проводится достаточно быстро, является очень эффективной, требует минимум средств и предоставляет надёжные результаты.

К методам разведочной геофизики следует отнести: сейсморазведку, гравиразведку, электроразведку, магниторазведку, радиометрию, ядерную геофизику, теплометрию и исследование скважин. Рассмотрим эти методы более подробно.

Сейсморазведка

Сейсморазведка основывается на исследовании строения Земли при помощи регистрации и возбуждения упругих волн. Любые породы земной коры можно дифференцировать по упругости поверхности при помощи модуля Юнга, скорости поперечных и продольных волн, плотности и коэффициенту Пуассона. Узнать геологическое строение породы возможно благодаря вторичным волнам, которые образуются на границе каждого слоя. Упругость вторичных волн даёт обширную информацию для учёного. Сейсмоприёмники помогают преобразовать колебания волны в электрический сигнал. Лучше всего полученную информацию изображать в виде графиков или сейсмограмм. Строение коры Земли лучше всего изображать при помощи разрезов и карт. Анализ таких карт позволяет определять место возможных залежей полезных ископаемых.

Гравиразведка

Гравиразведка изучает изменение ускорения при свободном падении и влияние этого фактора на плотность тела. Этот метод часто используют при исследовании глубоких слоёв земной коры и верхней части мантии. Кроме того, этот метод очень эффективен при исследовании поверхности на тектонические нарушения и при поиске полезных ископаемых. Гравиразведка позволяет детально изучать внутреннее строение горных пород и их местонахождение. Для гравиразведки применяются специальные приборы – гравиметры, которые способны измерять ускорение свободного падения.

Геофизика – это наука, в которой важное место принадлежит геомагнетизму, который изучает магнитное поле Земли и некоторых горных пород. Возможность измерения направления и интенсивности магнитного поля позволяет изучать происхождение пород, дрейф материков и тектонику плит. Для поиска полезных ископаемых часто используется магнитная наземная, морская и аэромагнитная съёмка. Магниторазведка предоставляет большой объём информации для исследования аномальных явлений.

Электроразведка

Электроразведка помогает досконально изучить отдельные параметры геологического разреза. Методы этого вида геофизики делятся на виды по характеру источника и его типу.

Геофизика как профессия

Работа геофизиком может быть очень разнообразна, так как существует множество отдельных направлений. Такая профессия очень интересна из-за того, что совмещает в себе разные виды деятельности: можно трудиться в лаборатории, строить графики за компьютером или исследовать породы в полевых условиях. Кроме того, работа геофизиком позволит путешествовать по миру, ведь опытные образцы могут понадобиться из пустыни, реки, тундры, гор и т. д. Именно поэтому геофизик должен быть спортивно подготовлен, чтобы активно принимать участие в экспедиции. Иногда необходимо будет пробираться в труднодоступные места, несмотря на холод или жару.

В этой профессии тесно связано исследование теоретических вопросов с решением практических проблем. Поскольку минеральные и энергетические ресурсы любой страны во многом обеспечивают её экономическое состояние, профессия геолога всегда востребована на рынке труда. Социально-экономическая роль геологов в жизни общества огромна, так как их работа позволяет избегать экономических кризисов или выходить из них с наименьшими затратами ресурсов. В России профессия геолога имеет особое значение, так как территория страны очень велика и богата месторождениями полезных ископаемых. Занимательно, что даже на сегодняшний день нельзя достоверно говорить о том, что геологам России известны все месторождения полезных ископаемых.

Работа геологов состоит из множества этапов. Основные из них – это проведение поисковых работ, оценка состояния, обеспечение геологического обслуживания, установление месторождений, изучение геологической структуры, осуществление контроля и обобщение полученного геологического материала.

Инструментарий геофизика

Так как геофизики проводят сложные работы по исследованиям земной коры, ищут месторождения полезны ископаемых, занимаются сейсморазведкой, то в их арсенале находится много инструментов и приборов, которые позволяют собирать, накапливать и анализировать полученные данные. Обычно геофизик работает с гидрографическими, океанографическими, метеорологическими и гидрологическими инструментами. По результатам собранной информации учёные составляют карты, графики, определяют происхождение, возраст и состав горных пород, а также толщину ледников и анализируют неоднородность дна океанов.

Геофизики активно занимаются сейсморазведкой, проводя искусственные взрывы и создавая волны. Полученные результаты тщательно изучаются и анализируются на компьютере. Геофизика – это такая наука, которая требует от учёного много знаний в разных сферах. Геофизик должен уметь определять геофизические особенности изучаемого района, уметь работать с компьютерными программами и правильно составлять карты. Строительная геофизика является большой базой знаний для исследований геофизиков.

Институт геофизики РАН

Институт геофизики создан с целью развития геофизической науки. Работники и преподаватели института принимают активное участие в разнообразных международных конференциях. Материально-техническая база довольно богата: есть цифровая аппаратура для исследования геофизических полей, специальная аппаратура для проведения термо- , сейсмо- и магнито-исследований в глубоких скважинах, комплекс для наблюдения за радоном – вестником землетрясений.

Учащиеся могут защитить в институте докторскую и кандидатскую диссертацию, и продолжить свою карьеру в стенах института. Также действует аспирантура. Основные направления в исследованиях основываются на изучении сейсмометрии, региональной геофизики, электрометрии, математической геофизики, геодинамики, промышленной и экологической геофизики.

Также институт славится своими разработками, которые позволили упростить и систематизировать информацию, полученную из первичных источников. В институте были изобретены: система для регуляции сейсмической активности «Синус», магнитометр обычный и скважинный, аппаратурный комплекс для проведения геоакустического каротажа, наземный трехэлементный магнитометр и скважинный каппометр.

Праздник

День геофизика отмечается в первое воскресения апреля. Праздник касается геологов, гидрогеологов, геохимиков, геоэкологов и т. д. Этот праздник начинает свою историю с 1966 года в СССР. На сегодняшний день в России праздник не считается государственным, но в кругах учёных о нём помнят. Некоторые страны бывшего СССР и вовсе признали его государственным.

История праздника уходит корнями в 1966 год, когда Верховный Совет СССР решил отблагодарить советских геологов за создание минерально-питьевой базы для страны. Официальным поводом стало открытие месторождений нефти и газа в Западной Сибири. День геолога отмечается в первое воскресение апреля неспроста, ведь именно с весны начинается активная подготовка к экспедициям. Инициатором создания такого праздника выступил академик А. Л. Яншин. День геолога отмечается в Белоруссии, Кыргызстане, России и Украине.

Где учиться?

Перед тем как выбирать место для учёбы, следует понять в какой области будущий геолог хотел бы трудиться. В геологии есть множеств различных направлений и спецификаций. Очень перспективны климатология и геофизика, так как правильные прогнозы погоды всегда будут необходимы обществу.

Обучиться профессии геолога можно в Московском государственном университете, в Государственном университете Санкт-Петербурга, в Государственном горном институте, в Российском государственном университете нефти и газа, в Московском горном университете и т. д. Большое количество учебных заведений и направлений для обучения позволяют любому желающему выбрать направление и вуз.

Геофизик - профессия, где учат не только теоретическим методам, но также правилам выживания в суровых условиях природы. Ведь будущий геолог может работать в промышленных добывающий организациях, независимых геологических организациях, исследовательских центрах, буровых партиях и разведочных экспедициях.

Следует понимать, что работа геологом будет недоступна для некоторых студентов по состоянию физического или психического здоровья. В приёме в высшее учебное заведение будет отказано абитуриентам, которые имеют заболевания сердца, органов пищеварения, позвоночника, перепады давления, часто теряют сознание, страдают от судорог и расстройства координации движений, нарушения слуха и вестибулярного аппарата, нарушения при различении цветов и т. д.

Качества геолога

Геофизик – профессия, которая потребует от человека важных черт характера. Кроме отличного физического здоровья, необходимо иметь развитую память, наблюдательность, умение работать в коллективе, аналитические способности, умение ориентироваться в пространстве, самостоятельность, глобальное мышление, логику, упорство и эмоциональную устойчивость.

fb.ru

Геофизика - это... Что такое Геофизика?

Геофизика — комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твёрдой Земли (земную кору, мантию, жидкое внешнее и твёрдое внутреннее ядро), физику океанов, поверхностных вод суши (озёр, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

Разведочной геофизикой называют раздел геофизики, посвящённый изучению строения Земли с целью поиска и уточнения строения залежей полезных ископаемых, а также выявлению предпосылок для их образования. Разведочная геофизика проводится на суше, акватории морей, океанов и пресных водоемов, в скважинах, с воздуха и из космоса. Разведочная геофизика является важной составляющей геологоразведочного процесса благодаря высокой эффективности, надёжности, дешевизне и скорости проведения. К методам разведочной геофизики относят сейсморазведку, электроразведку на постоянном и переменном токе, магниторазведку, гравиразведку, геофизические исследования скважин, радиометрию, ядерную геофизику и теплометрию.

Сейсморазведка

Сейсморазведка - раздел разведочной геофизики, включающий методы изучения строения Земли, основанные на возбуждении и регистрации упругих волн. Породы земной коры различаются по упругим свойствам — модулю Юнга, коэффициенту Пуассона, скорости продольных и поперечных волн и плотности. На границах слоев с различными упругими свойствами вторичные волны, содержащие информацию о геологическом строении.

Для регистрации колебаний упругих волн применяют специальные устройства — сейсмоприемники, преобразующие колебания частиц почвы в электрический сигнал. Полученная информация собирается на графиках, называемых сейсмограммами, обрабатывается и получает геологическое толкование. В результате строение земной коры изображается в виде разрезов и карт, на которых определяется место возможного скопления полезных ископаемых.

Гравиразведка

Гравиразведкой или гравиметрией называется геофизический метод, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых — преимущественно рудных, выделении алмазоносных трубок взрыва. Гравиразведка позволяет изучать состав горных пород, и их положение в геологическом разрезе, например для магматических с ростом основности возрастает концентрация железистых соединений и плотность.

Для проведения гравиразведки применяются гравиметры, чувствительные приборы измеряющие ускорение свободного падения. Единицей измерения этой величины является Гал или более употребительный мГал. Крупные геологические тела характеризуются аномалиями в десятки и даже сотни мГал. В отечественной практике наиболее широко применяются кварцевые гравиметры ГНУ-КС и ГНУ-КВ.

Магниторазведка

Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что глобальное магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). Измерения интенсивности и направления намагниченности горных пород позволяют изучать происхождение и изменения во времени геомагнитного поля и служат ключевой информацией для развития теории тектоники плит и дрейфа материков. С целью поисков месторождений полезных ископаемых магниторазведка применяется в виде наземной, морской или аэромагнитной съёмки. Магнитная съемка проводится, как правило, по сети параллельных линий, или профилей. После ввода необходимых поправок строится карта магнитного поля в виде графиков или изолиний. На карте могут находится области спокойного поля и магнитные аномалии — локальные возмущения магнитного поля, вызванные неоднородностями магнитных свойств горных пород. Магниторазведка проводится с целью выявления аномалий как непосредственно связанных с полезным ископаемым, так и с контролирующими залежь тектоническими и стратиграфическими структурами.

Электроразведка

Методы электроразведки позволяют изучать параметры геологического разреза, измеряя параметры постоянного электрического или переменного электромагнитного поля. Примером электроразведки может служить исследование методом вызванной поляризации.

Геофизическое исследование скважин

Геофизические исследования скважин (ГИС) — исследования бурящихся, промысловых и других скважин геофизическими методами с целью изучения разреза скважины для последующей качественной и количественной геологической оценки, как самой скважины, так и месторождения в целом. Комплекс ГИС включает в себя множество методов, которые можно условно разделить на несколько больших и не очень разделов, в зависимости от типа изучаемых физических параметров пород. Работы проводят с помощью геофизического оборудования.Методов каротажа и ГИС довольно много. Это такие методы как:

  • Электрический каротаж — объектом исследований являются электрические свойства горных пород.
  • Ядерно-геофизические методы каротажа, основанные на изучении поведения ионизирующих излучений в скважине.
  • Акустический каротаж.
  • Газовый каротаж.
  • Термокаротаж.
  • Инклинометрия.
  • Кавернометрия.
  • Радиоактивные методы (гамма-каротаж и гамма-спектральный каротаж)

А также некоторые другие отдельные виды геофизических работ в скважинах.

Наиболее широкое применение геофизических исследований скважин приходится на нефтегазовую промышленность:

  • Каротажи.
  • Контроль за разработкой месторождения.
  • Перфорация.

Примечания

См. также

Ссылки

dic.academic.ru

Профессия Геофизик. Описание профессии. Кто такой Геофизик. Описание профессии

В зависимости от своей специализации (геофизик-нефтяник, инженер-геофизик, геофизик-разведчик, сейсморазведчик, гравиразведчик и др.), геофизик выполняет разные виды деятельности. Он может работать как  в научно-исследовательской лаборатории за компьютером, так и в полевых условиях, выезжая в командировки. Геофизикам приходится бывать в тундрах, пустынях, в горах и других необычных и даже труднодоступных местах. Иногда нужно карабкаться по горам или сплавляться по бурным рекам.

Геофизики ведут поиск и разведку месторождений руды, нефти и газа, подземных вод на суше и шельфах морей, проводят сейсмическую разведку. В арсенале геофизиков множество специальных инструментов и приборов: геодезические, гидрографические, океанографические, гидрологические, метеорологические или геофизические. С их помощью проводятся необходимые измерения магнитных, электрических и гравитационных полей. По результатам измерений они составляют карты структуры земной коры, рельефа дна океана, определяют толщину ледниковых покровов, а также состав и происхождение горных пород.

Геофизики также занимаются сейсморазведкой – исследованием земной коры с помощью искусственно создаваемых взрывом или ударом сейсмических волн. Все полученные результаты анализируются на компьютере.

Кроме общих знаний физики и географии геофизику необходимо иметь геолого-геофизические сведения об изучаемом районе. Он должен знать специальные профессиональные компьютерныепрограммы и уметь составлять карты. В своей работе геофизик применяет знания инженерной геологии в строительстве плотин, мостов, туннелей и крупных сооружений.

moeobrazovanie.ru

геофизика - это... Что такое геофизика?

  • геофизика — геофизика …   Орфографический словарь-справочник

  • Геофизика — Геофизика  комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твёрдой Земли (земную кору, мантию, жидкое внешнее и твёрдое внутреннее ядро), физику океанов, поверхностных вод суши (озёр …   Википедия

  • Геофизика — наука, изучающая физ. явления и процессы, которые протекают в оболочках Земли и в ее ядре. Учитывая специфические особенности геосфер в отношении их структуры, состава, физ. свойств и развития, в Г. выделяют физику атмосферы, физику моря и физику …   Геологическая энциклопедия

  • геофизика — Комплекс наук, изучающих физические свойства Земли в целом и физические процессы, происходящие в её твёрдых сферах, а также в жидкой (гидросфера) и газовой (атмосфера) оболочках [БСЭ] геофизика Комплекс наук, изучающих физические поля Земли и… …   Справочник технического переводчика

  • ГЕОФИЗИКА — (греч., ge земля, и physikos физика). Учение о физических процессах внутри земли. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОФИЗИКА греч., от ge, земля, и physikos. Учение о физических явлениях внутри земли …   Словарь иностранных слов русского языка

  • ГЕОФИЗИКА — комплекс наук, исследующих физическими методами строение Земли, ее физические свойства и процессы, происходящие в ее оболочках. Соответственно в геофизике выделяют физику т. н. твердой Земли (сейсмология, геомагнетизм, гравиметрия, разведочная… …   Большой Энциклопедический словарь

  • ГЕОФИЗИКА — ГЕОФИЗИКА, комплекс наук, исследующих физическими методами строение, физические свойства Земли и процессы, происходящие в ее оболочках. В геофизике выделяют физику Земли (сейсмология, геомагнетизм, гравиметрия, геотермия, разведочная геофизику и… …   Современная энциклопедия

  • ГЕОФИЗИКА — ГЕОФИЗИКА, наука, изучающая физические свойства Земли как единой системы. Частично связана с ХИМИЕЙ, ГЕОЛОГИЕЙ, АСТРОНОМИЕЙ, СЕЙСМОЛОГИЕЙ, МЕТЕОРОЛОГИЕЙ и многими другими науками. На основе данных о природе сейсмических волн, геофизики изучили… …   Научно-технический энциклопедический словарь

  • ГЕОФИЗИКА — ГЕОФИЗИКА, геофизики, мн. нет, жен. (от греч. ge земля и слова физика ) (научн.). Совокупность дисциплин, применяющих физические методы к изучению земного шара. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • геофизика — сущ., кол во синонимов: 4 • аэрономия (1) • климатология (9) • метеорология (18) …   Словарь синонимов

  • ГЕОФИЗИКА — комплекс наук, изучающих физические свойства Земли и процессы, происходящие в ее оболочках. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 …   Экологический словарь

dic.academic.ru

ГЕОФИЗИКА

ГЕОФИЗИКА, комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

В настоящей статье рассматривается исключительно физика твердой Земли, основными разделами которой являются сейсмология, геодезия, гравиметрия, геомагнетизм, геоэлектрика, геотермия, реология, физика минералов и горных пород. Прикладная геофизика разрабатывает методы и теорию геофизической съемки и геофизической разведки, главным образом с целью поиска месторождений полезных ископаемых (см. ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА). Морская геофизика проводит исследования в морях и океанах.

Геофизика использует данные других наук, в основном физики и геологии, а также математики, астрономии, кристаллографии, геохимии. Большое влияние на развитие геофизики оказали результаты космических исследований и развитие теории тектоники плит.

Сейсмология изучает землетрясения, их механизмы и последствия, распространение сейсмических волн, а также все виды движений земной коры, которые регистрируются сейсмографами на суше и на дне океанов и морей. Наиболее активные землетрясения наблюдаются в ослабленных зонах вдоль границ тектонических плит. При этом возбуждаются три типа сейсмических волн: продольные (P), поперечные (S) и поверхностные (волны Лява и Рэлея). Сильные землетрясения могут также возбуждать свободные колебания всей Земли.

Выбором сейсмически безопасных мест для строительства проектируемых сейсмостойких сооружений занимается инженерная сейсмология. Реальной методологии точного прогноза времени и места землетрясений пока не существует. Известно, что наиболее сильные землетрясения сопровождают процесс субдукции (поддвига) в глубоководных желобах или движения по трансформным разломам. Это позволяет прогнозировать районы возможных землетрясений. Информация о силе ожидаемых толчков крайне необходима для определения возможной интенсивности сейсмических воздействий на такие сооружения, как ядерные реакторы, плотины, мосты и здания.

Сейсмические методы используются для изучения внутреннего строения Земли в целом и ее структуры на разных глубинах. Следует отметить, что на основе результатов сейсмических исследований установлено, что Земля состоит из ядра, мантии и земной коры. Использование цифровых сейсмографов сыграло огромную роль в изучении земных недр и позволило регистрировать землетрясения. По данным об изменениях скоростей волн была составлена трехмерная схема строения мантии. Структура верхней мантии, определяемая по скоростям сейсмических волн, различна для районов срединно-океанических хребтов и материков и соответствует распределению теплового потока. Сходная картина в изменениях скоростей волн отмечается и в нижней мантии, однако они не коррелируют с макрорельефом поверхности Земли. См. также ЗЕМЛЕТРЯСЕНИЯ.

Геодезия исследует главным образом форму Земли. Различают две геодезические задачи: определение параметров сфероида или эллипсоида (дающего наилучшее совпадение с поверхностью моря), в первом приближении аппроксимирующего форму Земли, и измерение отклонений действительной поверхности геоида от сфероида. По существу, форма Земли представляет собой эллипсоид вращения, слегка сплющенный на полюсах. Определение формы геоида и сфероида осуществляется в основном путем сочетания наземной геодезической съемки и изучения орбит искусственных спутников Земли. Изменения формы Земли, связанные с перемещением литосферных плит, определяются по данным радиоинтерферометрии и Системы глобального определения местоположения (GРS). См. также ГЕОДЕЗИЯ.

Гравиметрия занимается изучением гравитационного поля Земли. Локальные вариации этого поля, связанные с плотностными неоднородностями в пределах земной коры, используются для определения положения рудных тел. Полагают, что рельеф земной поверхности и плотностные изменения внутри земной коры с глубиной взаимно компенсируются, поэтому удовлетворительная корреляция между гравитационными аномалиями протяженностью 100-1000 км и рельефом не наблюдается.

Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). Измерения интенсивности и направления намагниченности горных пород позволяют изучать происхождение и изменения во времени геомагнитного поля и служат ключевой информацией для развития теории тектоники плит и дрейфа материков. См. также ГЕОМАГНЕТИЗМ.

См. также МАГНИТНОЕ ПОЛЕ ЗЕМЛИ.

Геоэлектрика изучает изменяющуюся с глубиной электропроводность Земли путем наблюдений за изменениями магнитного поля. Взаимодействие вариаций магнитного и электрического полей, обусловленных как естественными, так и искусственно индуцированными токами, используется в магнитотеллурическом зондировании при разведке полезных ископаемых и для изучения строения нижней части коры и верхней мантии. См. также ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА.

Геотермические исследования основаны на измерении теплового потока и теплопроводности, а также радиоактивности вблизи поверхности, которые затем экстраполируются на глубину. Тепловое излучение Солнца оказывает незначительный эффект на недра Земли. Точно так же энергия, высвобождаемая при землетрясениях и приливном трении, мала по сравнению с геотермальными потерями тепла. Предполагается, что главный источник тепла в Земле обусловлен радиоактивным распадом долгоживущих радионуклидов, а также высвобождением гравитационной энергии и распадом короткоживущих радионуклидов. Современный тепловой поток Земли подвержен большим изменениям. На материках он зависит от радиоактивности коренных пород, причем на долю мантии приходится примерно половина общего теплового потока. В океанах он вдвое больше, чем на материках, и обусловлен, главным образом, конвекцией в мантии.

На глубинах ниже 100 км распределение температур и источников тепла, а также механизм его переноса точно не установлены. Конвекция, вероятно, происходит в верхней мантии и внешнем ядре, но неясно, насколько она активна в нижней мантии. На ранних этапах истории Земли термальная конвекция могла быть более интенсивной. В вулканических областях, срединно-океанических хребтах и областях гидротермальной активности обнаружен более высокий тепловой поток.

Реология занимается изучением остаточных деформаций и течения вязких и пластичных материалов. Применительно к Земле это обычно означает исследование вязкости внутренних слоев и ее изменений во времени, а также глубинных движений вдоль разломов, перемещений литосферы относительно астеносферы, субдукции литосферных плит, трещинообразования в горных породах, крипа и т.п. Прямые измерения вязкости в недрах Земли невозможны, однако ее оценки могут быть выполнены на основе изучения скорости поднятий таких древних областей, как Канадский и Балтийский щиты, ранее опустившихся под действием ледниковой нагрузки. Согласно этим оценкам, вязкость верхней мантии – 1020-1022 ПаЧс, а нижней - от 1022 до 1026 ПаЧс (паскаль - единица давления, 1 Па = 10 дн/см2).

На основе исследований горных пород при высоких давлениях изучаются их свойства и интерпретируются данные о скоростях распространения сейсмических волн и распределении плотности вещества в недрах Земли. Таким образом определяется минералогический состав ее внутренних слоев. Методы изучения плотности, кристаллической структуры, электропроводности, точки плавления минералов и горных пород при высоких давлениях базируются на достижениях термодинамики и физики твердого тела. Экспериментальные методы включают ультразвуковые измерения скорости как функции давления величиной примерно 30 кбар (1 кбар = 108 Па). При помощи специальной техники можно генерировать высокие давления, по крайней мере до 1000 кбар (100 ГПа). Под действием ударного сжатия или в камерах с алмазными наковальнями могут быть получены более высокие давления, чем в центре Земли (~3600 кбар, или 360 ГПа).

В идеальном случае для полного понимания процессов, происходящих в глубине Земли, необходимо знать зависимости скоростей распространения продольных и поперечных волн, модуля упругости, плотности, коэффициента термического расширения, удельной теплоемкости, температуры плавления, вязкости, электро- и теплопроводности горных пород от давления. Поскольку эти сведения невозможно получить путем непосредственных наблюдений, бóльшая часть современных знаний предстает в форме теоретически рассчитанных уравнений состояния как функции от плотности. На основе использования уравнений состояния экспериментальные данные экстраполируются на область высоких давлений, характерных для недр Земли.

Важную роль в определении свойств, не поддающихся непосредственным измерениям, и интерпретации сейсмических данных для определения состава пород и фазовых переходов в Земле играют опытным путем установленные соотношения между скоростями волн, плотностью и атомным весом. Все модели Земли включают зоны скачкообразных изменений плотности и волновых скоростей на различных глубинах, обусловленные изменениями химического состава. Некоторые из этих зон идентифицируются как фазовые переходы или перестройка кристаллической структуры в минеральных ассоциациях, что подтвердили эксперименты с использованием методов рентгеноструктурного анализа. Лабораторные эксперименты по фазовым переходам в горных породах при высоких давлениях и температурах позволяют определить границы различных сред в земных недрах.

Фазовые переходы в недрах Земли происходят в определенном диапазоне глубин. Переходная зона между 400 и 1000 км включает две главные границы со скачкообразным изменением свойств на глубинах ~400 и ~670 км, которые идентифицированы как границы перехода оливина в шпинель и шпинелеподобные структуры и шпинели в более плотную ассоциацию - перовскит плюс магнезиовюстит.

Граница между ядром и мантией имеет химическую природу. Внешнее ядро может быть представлено жидким железо-никелевым расплавом с добавками более легких элементов, по всей вероятности, серы, кислорода или кремния.

Наиболее точные изотопные методы определения возраста горных пород основаны на процессах распада радиоактивных элементов в этих породах.

www.krugosvet.ru


Смотрите также

Календарь

ПНВТСРЧТПТСБВС
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Мы в Соцсетях

 

vklog square facebook 512 twitter icon Livejournal icon
square linkedin 512 20150213095025Одноклассники Blogger.svg rfgoogle